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Abstract

For testing the mean of a normal distribution, the p-value, derived from the uniformly most powerful test, is usually used

as evidence against the null hypothesis. However, the p-value only depends on the hypothesis assumption, but not on the

bounds of the parameter space. When the parameter space is restricted, the information of the restriction will not be

sufficiently utilized if we still use the usual p-value as evidence against the null hypothesis. In this paper, a modified p-value,

based on the bounds of the parameter space for one-sided hypothesis testing, is proposed. Theoretical and simulation

studies show that the modified p-value has better performance than the usual p-value from theoretical and simulation

studies.

r 2006 Elsevier B.V. All rights reserved.
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1. Introduction

Let X be a normal random variable with mean y and variance s2, where y is an unknown parameter and s2

is known. Without loss of generality, s2 is assumed to be 1 throughout the paper. For testing the hypothesis:

H0 : y 2 Y0 ¼ ð�1; y0� versus H1 : y 2 Y1 ¼ ðy0;1Þ, (1)

the suggestion of reporting a p-value derived from uniformly most powerful test as evidence against the null
hypothesis is commonly accepted. Note that the p-value depends only on observation x and y0. When the
parameter space Y0 [Y1 is a restricted space ðb; aÞ;�1pbpap1, instead of the natural parameter space
ð�1;1Þ, we investigate whether the usual p-value, which does not depend on the bounds a and b, is still good
evidence against the null hypothesis.

For the Poisson distribution, Woodroofe and Wang (2000) discuss this problem and point out the
drawbacks of using the usual p-value as a measure of evidence. A modified p-value is proposed in their paper
for this case. In the present paper, we propose a modified p-value for one-sided testing of the location of the
normal distribution.
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The disadvantage of using the usual p-value as a measure of evidence for restricted parameter spaces is due
to the fact that the information on the parameter space is not sufficiently utilized. Thus, we propose a modified
p-value depending on the bounds of the parameter space. This modified p-value is shown to be a Bayes
estimator in the terminology of Hwang et al. (1992), from which it follows that it is an admissible estimator of
the indicator function of Y0. The usual p-value is shown to be inadmissible.

In many practical applications, the parameter space is restricted and the bounds are known. This bounded
parameter space problem has been discussed in the recent literature. Mandelkern (2002) gives the examples
where the classical Neyman procedure is not satisfactory to many scientists, when the parameter is known to
be bounded. This problem occurs frequently in analyzing data from physics experiments (see Feldman and
Cousins, 1998; Roe and Woodroofe, 2001). Moreover, many other criticisms for the usual p-values also
appear in literature (Berger and Sellke, 1987; Berger and Delampady, 1987).

The paper is organized as follows. A modified p-value is proposed in Section 2. In Section 3, the proposed
method is evaluated from a Bayesian point of view and criteria in literature. Further, the modified p-value is
shown to be an admissible estimator of the indicator function of Y0, while the usual p-value is shown to be an
inadmissible estimator of this indicator function. In Section 4, the proposed method is illustrated by a real
data example. Simulation studies comparing between the usual p-value and the modified p-value are presented.
Section 5 discusses the p-values from the point of view of minimizing the sum of type I and type II errors.
2. Modified p-value

In this section, a modified p-value is proposed for testing

H0 : y 2 Y0 ¼ ðb; y0� versus H1 : y 2 Y1 ¼ ðy0; aÞ (2)

when Y0 [Y1 is a restricted parameter space ðb; aÞ. Let S denote the parameter space Y0 [Y1. The p-value
derived from the uniformly most powerful test based on the observation x is

Py0ðXXxÞ. (3)

We propose the modified p-value

ry0 ðxÞ ¼
Py0 ðXXxÞ �miny2S PyðXXxÞ

maxy2S PyðXXxÞ �miny2S PyðXXxÞ

to replace (3). For a fixed x, the range of ry0 ðxÞ is ð0; 1Þ for y0 2 S. When the parameter space is the natural
parameter space, ry0ðxÞ is equal to the usual p-value because maxy2S ryðxÞ ¼ 1 and miny2S ryðxÞ ¼ 0, which
leads to ry0 ðxÞ ¼ Py0ðXXxÞ.

So, ry0ðxÞ is an x-dependent transformation of the usual p-value (3). The reason for the construction of ry0 is
as follows. For a fixed x, (3) is not greater than maxy2S PyðXXxÞ and is not less than miny2S PyðXXxÞ. That
is, for a fixed x, the range of (3) is ðminy2S PyðXXxÞ;maxy2S PyðXXxÞÞ when y0 belongs to S. Note that if the
parameter space is the natural parameter space, the range of the usual p-value is ð0; 1Þ for y belonging to
ð�1;1Þ. When p-value is used as evidence against the null hypothesis, the decision rule for rejection of the
null hypothesis is to compare the p-value with the specified level a, which is usually 0.01 or 0.05. If the p-value
is less than a, then the null hypothesis is rejected. When the parameter space is restricted, it would be
unreasonable to use the same testing level because the usual p-value is greater than miny2S PyðXXxÞ for each
x. Thus, a feasible way is to make a transformation of the p-value such that miny2S PyðXXxÞ is not included in
a measure of evidence against the null hypothesis and its range is between 0 and 1. Then use the decision rule
which rejects the null hypothesis if this transformation of the p-value is less than the level a. From this point of
view, the modified p-value ry0ðxÞ is a reasonable transformation of the usual p-value.

For another good property of the modified p-value, consider the extreme case of testing (2) when the
parameter space is ðb;1Þ and y0 ¼ b. In this case, the null hypothesis should obviously be rejected for any x

because bpy for all y 2 S. However, the probability that the usual p-value is greater than any specified type I
error is positive for all x which indicates that the usual p-value cannot always reject the null hypothesis.
However, the modified p-value, which is zero, rejects the null hypothesis for all observations.
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3. The Bayesian approach

In this section the modified p-value ry0 ðxÞ and the usual p-value are examined by a criterion proposed in
Hwang et al. (1992). Hwang et al. provide a criterion to evaluate p-value by considering the loss function

LðrðxÞ; yÞ ¼ ðrðxÞ � Iðy 2 Y0ÞÞ
2, (4)

where rðxÞ denotes a p-value and

Iðy 2 Y0Þ ¼
1 if y 2 Y0;

0 if otherwise:

�
(5)

If a p-value is a good estimator of (5) under the squared error loss, then the p-value is recommended to be a
measure of evidence against the null hypothesis. Under the loss function (4), the usual p-value is demonstrated
to be an admissible estimator of (5) in the one-sided testing problem for some exponential families with the
natural parameter space in Hwang et al. (1992). However, when the parameter spaces are restricted,
Woodroofe and Wang (2000) show that the usual p-value is inadmissible under the loss function (4) for
Poisson distributions. This discovery reflects the invalidity of using the p-value as an indication against H0

when the parameter space is restricted. In this paper, the usual p-value is shown to be inadmissible for normal
distributions.

First, we will show that the modified p-value is a Bayes estimator of (5), from which the admissibility of the
modified p-value is obtained. Note that a Bayes estimator of (5) with respect to the prior pðyÞ under the loss
function (4) has the form

ZðxÞ ¼
Z
y2Y0

e�ðx�yÞ
2=2pðyÞdy

� Z
y2Y0

e�ðx�yÞ
2=2pðyÞdyþ

Z
y2Y1

e�ðx�yÞ
2=2pðyÞdy

� �
. (6)

Theorem 1. ry0ðxÞ is equal to the Bayes estimator of Iðy 2 Y0Þ with respect to prior pðyÞ ¼ I ðY0[Y1ÞðyÞ, where

I ðY0[Y1ÞðyÞ denotes the indicator function of Y0 [Y1.

Proof. First, assume that the parameter space is ðb;1Þ. Then Y0 in (1) is ðb; y0Þ. The Bayes estimator of
Iðy 2 Y0Þ with respect to pðyÞ ¼ I ðb;1ÞðyÞ isZ y0

b

e�ðx�yÞ
2=2 dy

�Z 1
b

e�ðx�yÞ
2=2 dy. (7)

Note that f ðtÞ ¼ e�t2=2 is symmetric around zero. Thus (7) is equal to

Z y0�x

b�x

f ðtÞdt

�Z 1
b�x

f ðtÞdt ¼

Z x�b

�1

f ðtÞdt�

Z x�y0

�1

f ðtÞdt

� ��Z x�b

�1

f ðtÞdt

¼ ðPbðXpxÞ � Py0 ðXpxÞÞ=PbðXpxÞ

¼ ðPy0 ðXXxÞ � PbðXXxÞÞ=ð1� PbðXXxÞÞ,

which is ry0 ðxÞ. By a similar argument, when the parameter space is one of the other two kinds of bounded
parameter space and the natural parameter space, the results still hold.

Remark 1. To avoid confusion, we use two indicator function notations throughout this paper. Besides the
indicator function (5), I ðY0[Y1ÞðyÞ denotes the Lebesque measure restricted to Y0 [Y1 used as the prior density
of y.

For proving the admissibility of ry0 ðxÞ, we can apply the result of Theorem 3.3 of Hwang et al. (1992). Note
that although this result is for natural parameter space, it can be applied to a restricted parameter space
because the tightness property in the proof also holds for a restricted parameter space. Since ry0ðxÞ is a Bayes
estimator of Iðy 2 Y0Þ, by a similar argument as Theorem 4.1 in Hwang et al. (1992), we have the following
proposition:

Proposition 1. The Bayes estimator (6) is admissible for estimating (5) under the loss function (4).



ARTICLE IN PRESS
H. Wang / Statistics & Probability Letters 77 (2007) 625–631628
From Proposition 1, the modified p-value is an admissible estimator for Iðy 2 Y0Þ for a restricted parameter
space. However, the usual p-value is shown to be an inadmissible estimator for Iðy 2 Y0Þ in Theorem 2.

Theorem 2. Let X be a normal random variable with distribution Nðy; 1Þ. Assume the parameter space has a lower

bound b, and Y0 ¼ ½b; y0Þ. Then the usual p-value is an inadmissible estimator of (5) under the loss function (4).

Theorem 2 is an extension to the normal distribution of Theorem 1 of Woodroofe and Wang (2000). The
proof is in the Appendix. The other restricted parameter space cases follow by a similar argument.

The following two propositions show the relationship between the modified p-value and the usual p-value.

Proposition 2.
1.
 Assume the parameter space is ðb;1Þ then ry0 ðxÞ is less than or equal to Py0 ðXXxÞ for all x and y0.

2.
 Assume the parameter space is ð�1; aÞ then ry0ðxÞ is greater than or equal to Py0 ðXXxÞ for all x and y0.

Proof. When the parameter space is ðb;1Þ,

ry0 ðxÞ � Py0ðXXxÞ ¼ PbðXXxÞðPy0ðXXxÞ � 1Þ=ð1� PbðXXxÞÞ,

which is less than or equal to zero.
When the parameter space is ð�1; aÞ, ry0ðxÞ is equal to Py0 ðXXxÞ=PaðXXxÞ, which is greater than or equal

to Py0 ðXXxÞ. &

When the parameter space is ðb; aÞ, by numerical calculations, ry0ðxÞ is less than or equal to Py0ðXXxÞ for
xpm, and greater than Py0ðXXxÞ for x4m, where m is a constant.

4. Examples

The proposed methodology can be very useful in real applications. It is illustrated by a real-data example
about testing the retirement age of civil servants. The data are the retirement ages of civil servants working for
Taiwan government. The retirement payment depends on the retirement age. There are two kinds of
retirement payment system for these civil servants: (1) A civil servant can continue receiving almost 85% of his
salary every month after retirement if he retires after age 50; (2) A civil servant can have a lump sum payment
when he retires. Note that if a civil servant retires after 50, he can choose either the first or the second systems;
however, if he retires before 50, he can only choose the second system. Most civil servants tend to choose the
first system because the total amount of money paid out in the first system is higher than in the second one.
But still some people will choose to retire before 50 for personal reasons. According to the law, the retirement
age cannot exceed age 65. Therefore, most civil servants’ retirement ages are between 50 and 65. Now we are
interested in estimating the average retirement age, and can expect that the average age is between 50 and 65.
Thus, in this example, we can choose 50 as a lower bound and 65 as an upper bound for the parameter space of
the average age.

Example 1. We collected the data of civil servants’ retirement ages from government records. There were a
total of 9055 civil servants retiring in 2002. In this example, the population is the whole data set, i.e. 9055 civil
servants’ retirement ages. The mean of these ages is 53.31. The variance is 81.45. Suppose that the researchers
do not have the whole data set. A sample of size n is chosen from the data, and they will use the sample to test

H0 : ypy0 versus H1 : y4y0, (8)

where y is the mean of the data and we assume that retirement age follows a normal distribution Nðy;s2Þ. As
we mentioned above, it is reasonable to assume that the parameter space has a lower bound 50 and an upper
bound 65.

Assume that we have a sample of five ages: 47, 52, 53, 56, 62, whose mean is 54. Assume that y0 in (8) is 51.
Then the usual p-value for testing (8) is

PðZ4ð54� 51Þ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
81:45=5

p
Þ ¼ 0:2287,
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Table 1

Fractions of p-values and of modified p-values less than 0.05 based on 1000 replicates

y0 H0 true or false n p-value p0:05 Modified p-value p0:05

50 False 5 0.214 1

52 False 5 0.074 0.117

53 False 5 0.04 0.048

54 True 5 0.019 0.019

56 True 5 0.002 0

58 True 5 0 0

Table 2

Fractions of p-values and of modified p-values less than 0.1 based on 1000 replicates

y0 H0 true or false n p-value p0:1 Modified p-value p0:1

50 False 5 0.354 1

52 False 5 0.188 0.273

53 False 5 0.115 0.141

54 True 5 0.061 0.061

56 True 5 0.011 0.009

58 True 5 0.001 0

Table 3

Fractions of p-values and of modified p-values less than 0.1 based on 1000 replicates

y1 � y2 H0 true or false n p-value p0:1 Modified p-value p0:1

50 False 5 0.347 1

52 False 5 0.166 0.206

53 False 5 0.121 0.07

54 True 5 0.05 0.02

56 True 5 0.018 0
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where Z is the standard normal random variable. Before calculating the modified p-value, we need to derive
the values of maxy2S PyðXXxÞ and miny2S PyðXXxÞ. Here S is (50, 65). The value of maxy2S PyðXXxÞ

happens at y ¼ 65, which is PðZ4ð54� 65Þ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
81:45=5

p
Þ ¼ 0:9968. The value miny2S PyðXXxÞ happens at

y ¼ 50, which is PðZ4ð54� 50Þ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
81:45=5

p
Þ ¼ 0:1608. The modified p-value is ð0:2287� 0:1608Þ=ð0:9968�

0:1608Þ ¼ 0:0812. In this case, (8) can be rejected by the modified p-value, but not the usual p-value if the
significant level is 0.1. It indicates that the modified p-value is not so conservative as the usual p-value.
Simulation results are conducted to compare the two p-values. Tables 1 and 2 show the number of times/1000
they are less than 0.1 and 0.05, respectively, in 1000 samples corresponding to several values of y0 2 S and
n ¼ 5.

From Tables 1 and 2, when y0 is less than 53.31, which means H0 is false, the number of p-value less than
0.05 is less than that of the modified p-value. When y0 is larger than 53.31, we have different results. They
reveal that the modified p-value is better than the p-value whether H0 is true or not.

Example 2. The upper bound in Example 1 is somewhat conservative. A more precise bound can be given
from empirical experience. We can collect the data of civil servants’ retirement ages of the other two years. The
means of the other two years are 55.54, 56.33. Thus, from this empirical knowledge, we can give a more precise
upper bound 60. We take the upper bound 60 and the lower bound 50, the results are listed in Table 3.

From Table 3, it is seen that the modified p-value is better than the usual p-value, as well as the results of
Example 1. From these simulation results, the performance of the modified p-value which sufficiently utilize



ARTICLE IN PRESS
H. Wang / Statistics & Probability Letters 77 (2007) 625–631630
the bound information is better than the usual p-value. In real applications, if we have bound information, the
modified p-value can certainly provide a more accurate analysis.

5. Minimization of the sum of type I error and type II error

In this section, we will compare the two p-values from the point of view of minimizing the sum of type I and
type II errors for simple hypothesis testing. The extension of the simple hypotheses testing to the compositive
hypotheses testing is still under investigation.

Consider a simple hypothesis versus a simple alternative hypothesis

H0 : y ¼ y0 versus H1 : y ¼ y1 ðy14y0Þ. (9)

If X ¼ y0, then the p-value of the UMP test is Py0 ðX4y0Þ ¼ 0:5, which does not favor H0 or H1. However,
when y1 � y0 is large, it leads to an unreasonable result because H0 should not be rejected if X ¼ y0. The
Bayes estimator, ZðxÞ ¼ f y0ðxÞ=ðf y0 ðxÞ þ f y1 ðxÞÞ, proposed in this paper with prior pðyÞ ¼ I ðY0[Y1ÞðyÞ, is more
practical because it is equal to 0:5 when x ¼ ðy0 þ y1Þ=2 and larger than 0:5 when xoðy0 þ y1Þ=2. Thus, it
makes sense to suggest rejecting H0 if

ZðxÞok. (10)

If k is 0.5, then from the testing point of view, the test with rejection region fx : ZðxÞokg has the optimal
property of minimizing the sum of the two types of errors.

Proposition 3. Let the random variable X have density function f yðxÞ with monotone likelihood ratio in x. Then,
for testing (9), a rejection region which minimizes the sum of type I error and type q error is of the form

fx : xXc�g, where c� satisfies f y0ðc
�Þ ¼ f y1 ðc

�Þ.

Proof. From the Neyman–Pearson lemma, the rejection region such that the sum of type I error and type q
error is minimal should be of the form fx : xXcg, where c is some positive constant.

Let the rejection region be Sc ¼ fx : xXcg. The sum of type I error and type q error is

eðcÞ ¼

Z 1
c

f y0ðxÞdxþ

Z c

�1

f y1ðxÞdx.

The derivative of eðcÞ is ðq=qcÞeðcÞ ¼ �f y0ðcÞ þ f y1 ðcÞ: The value c� such that eðcÞ is minimal satisfies
ðq=qcÞeðcÞ ¼ 0. Thus c� satisfies f y0 ðc

�Þ ¼ f y1ðc
�Þ. &

For the normal distribution Nðy; 1Þ, the value of c satisfying f y0 ðcÞ ¼ f y1ðcÞ is ðy0 þ y1Þ=2. Thus, the rejection
region such that the sum of type I and type II errors is minimal is fx : x4ðy0 þ y1Þ=2g. It is reasonable to
assume k ¼ 0:5 in (10), then the rejection region fx : ZðxÞo0:5g derived from ZðxÞ is equal to
fx : x4ðy0 þ y1Þ=2g. However, the rejection region fx : PðXXxÞo0:5g derived from the usual p-value is
equal to fx : x4y0g, which is not the rejection region of minimizing the sum of type I and type II errors. It
reveals another advantage for ZðxÞ, but not for the p-value. In fact, for any distribution, the value c satisfying
f y0 ðcÞ ¼ f y1ðcÞ is the value x for which the Bayes estimator f y0 ðxÞ=ðf y0 ðxÞ þ f y1 ðxÞÞ is equal to 0:5. Therefore,
from the perspective of minimizing both testing errors, we can see that ZðxÞ is more appropriate as a measure
evidence against the null hypothesis.

Appendix
Proof of Theorem 2. Note that Theorem 3.3 of Hwang et al. (1992) is also valid for a restricted parameter
space. The necessary and sufficient condition of an estimator ZðxÞ being admissible given by Theorem 3.3 of
Hwang et al. (1992) is that there exists priors p0ðyÞ on ðb; y0Þ and p1ðyÞ on ðy0;1Þ such that ZðxÞ can be
expressed as R y0

b
eðx�yÞ

2=2p0fdygR y0
b

eðx�yÞ
2=2p0fdyg þ

R1
y0

eðx�yÞ
2=2p1fdyg

(11)
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and p ¼ p0 þ p1 should satisfy
R
Y0[Y1

eðx�yÞ
2=2pfdygo1. By using (11), it will be shown that the usual p-value

Py0 ðXXxÞ is inadmissible. Assume that Py0 ðXXxÞ is admissible, by (11), we have

Py0ðXpxÞ ¼

R1
y0

eðx�yÞ
2=2p1fdygR y0

b
eðx�yÞ

2=2p0fdyg þ
R1
y0

eðx�yÞ
2=2p1fdyg

.

Thus

Py0ðXpxÞ

Z 1
b

eðx�yÞ
2=2pfdyg ¼

Z 1
y0

eðx�yÞ
2=2pfdyg. (12)

Note that

Py0ðXpxÞ ¼

Z x

�1

eðt�y0Þ
2=2 dt ¼

Z 1
y0

eðt�xÞ2=2 dt ¼

Z 1
y0

etxe�ðx
2þt2Þ=2 dt,

which implies ex2=2 ¼
R1
�1

etx e�t2=2 dt. Let U, Y and W be independent random variables such that Y ¼ 1 or 0

with probabilities
R1
y0

e�t2=2 dt and
R y0
�1

e�t2=2 dt, U has density function e�u2=2 and W ¼ YW 0 þ ð1� Y ÞW 1,

where W 0 and W 1 are random variables with density functions e�w2=2p0ðwÞ and e�w2=2p1ðwÞ, respectively. Then
(12) can be rewritten asZ 1

y0
exu e�u2=2 du

Z 1
b

exw e�w2=2pðwÞdw ¼

Z 1
�1

exu e�u2=2 du

Z 1
y0

exw e�w2=2p0ðwÞdw.

From the above equation and PðY ¼ 1Þ ¼ PðUXy0Þ, we have

EðeX ðUþW ÞjUXy0Þ ¼ EðeX ðUþW ÞjY ¼ 1Þ (13)

for all x.
According to moment generating function property, if the moment generating function of a distribution

exists in a neighborhood of 0, then the distribution is determined. See, for example, Billingsley (1995, p. 390).
Since the moment generating functions of two conditional distributions are the same for all x, the two
conditional distributions are the same, which means that:

PðU þWpzjUXy0Þ ¼ PðU þWpzjY ¼ 1Þ (14)

for all z.
But, when zobþ y0, the left-hand side of (14) is 0 since UXy0 and WXb. However, the right-hand side of

(14) is always positive. This contradiction is due to the assumption of the p-value being admissible. &
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