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Abstract

Networks are widely used in biology to represent the relationships between genes and gene functions. In Boolean
biological models, it is mainly assumed that there are two states to represent a gene: on-state and off-state. It is typically
assumed that the relationship between two genes can be characterized by two kinds of pairwise relationships: similarity and
prerequisite. Many approaches have been proposed in the literature to reconstruct biological relationships. In this article,
we propose a two-step method to reconstruct the biological pathway when the binary array data have measurement error.
For a pair of genes in a sample, the first step of this approach is to assign counting numbers for every relationship and select
the relationship with counting number greater than a threshold. The second step is to calculate the asymptotic p-values for
hypotheses of possible relationships and select relationships with a large p-value. This new method has the advantages of
easy calculation for the counting numbers and simple closed forms for the p-value. The simulation study and real data
example show that the two-step counting method can accurately reconstruct the biological pathway and outperform the
existing methods. Compared with the other existing methods, this two-step method can provide a more accurate and
efficient alternative approach for reconstructing the biological network.
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Introduction

One great challenge of postgenomic research is to explore

complex biological pathways from genomic data such as DNA

sequences, protein sequences, and gene expression profiles. The

network building method is widely used throughout biology to

reconstruct complex biological pathways.

We take MAPK pathway as an example. The MAPK/ERK

pathway is a signal transduction pathway that couples intracellular

responses to the binding of growth factors to cell surface receptors.

Robert et al. [1] and related studies [2–5] based on biology

experiments provide the MAPK pathway (Figure 1).

It would be interesting if Figure 1 can be reconstructed in terms

of their expression profile of Wsc1/2/3, Mid2,…, etc. To reduce

the cost of experiments, one possibility is to predict the activation

status of these genes through their microarray expression data for

inferring the pathway.

There have been methods proposed in literature for recon-

structing genetic regulatory networks in terms of microarray data.

For instance, the Bayesian network model is an important

technique that has been studied in the last two decades [6–8]. In

addition, Wei and Li [9] proposed a hidden spatial-temporal

Markov random field model to identify genes that are related to

biological pathway. Allocco et al. [10] provided a variety of

methods to find the gene-pairs with similarity relationship.

Moreover, other algorithms using linear models [11,12], differen-

tial equation [11,13], neural network [14] and structural equation

modeling [15] have been proposed to explore gene regulatory

networks based on genomewide data. However, most of these

methods have limitations in dealing with large-scale gene

regulatory network because of their complex model structures.

Also, careful discretization can be used to denoise high-throughput

data. One such example can be found in Xing and Karp [16].

To overcome the disadvantage of the mentioned methods, we

consider a simple model based on the Boolean network to

reconstruct a large scale gene network in this study. Boolean

networks have been proposed and investigated for a long time in

literature. Kauffman [17,18] considered a dynamic version of

Boolean networks. Liang et al. [19] proposed the algorithm

REVEAL to infer gene regulatory network by calculating the

Shannon entropy. Akutsu and Miyano [20] proposed an

identification algorithm to reconstruct the Boolean network by

comparing the collected data with all possible Boolean functions

and input datasets. In order to make Boolean network more

comprehensive, Shmulevich et al. [21] proposed the model of

probability Boolean network (PBN). Moreover, for large-scale

gene regulatory networks, Kim et al. [22] have used Boolean

network with chi-square test on the yeast cell cycle microarray

gene expression datasets. Markowetz et al. [23] proposed the

nested effects model to infer the genetic network. Li et al. [24]

made a comparison between the approaches of probabilistic

Boolean network and dynamic Bayesian network. More recent

developments are referred to Ay, Xu and Kahveci [25] and

Davidich and Bornholdt [26].

In this article, we consider the directed acyclic Boolean (DAB)

network as a tool for exploring biological pathways. Our goal is to
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construct a DAB network from the noisy array data. Since it

involves noisy data, the reconstruction of the pathways cannot

employ a deterministic inference. Instead, we need to establish a

statistical model to capture its random characteristics. A DAB

network is characterized by two kinds of pairwise relationships:

similarity and prerequisite. The former represents a pair of

elements with coherent on-off states. The latter is a partial order

relationship, namely, the on-status of one element is a prerequisite

for the on-status of another element. More specifically, if one

element is a prerequisite to another element, the off-status of one

element will restrict another element’s off-status. A DAB network

is uniquely determined by its state space: all possible on-off states

subjected to the pairwise relationships.

Recently, a Boolean implication network is proposed with

similar aspect as the DAB network, which investigates all Boolean

implications between pairs of genes for large-scale genome

microarray datasets [27]. For any pair of elements, they use two

statistics to test whether there is any specific relationship between

the pair of elements. However, the methods are more applicable

for dealing with mass information of datasets.

The approach of building a DAB network based on the

expectation-maximization (EM) algorithm to derive the maximum

likelihood estimator [28] for a statistical model is established in Li

and Lu [29]. Their strategy is to build up a statistical model with

measurement error and assign scores for the possible relationships

between two genes, and then use the scores to select the true

relationship. This method involves more computation and cannot

provide a simple closed-form statistic to recover the true

relationships between genes.

In this study, we propose a simple method to estimate pairwise

relationships between elements from noisy array data. The

approach is based on two steps: the first one is to count the

numbers of different pairwise relationships in a sample, and the

second one is to test the relationship hypotheses according to their

asymptotic p-values. Compared with the Li and Lu [29] method,

this new approach has a simple closed form and it is not time-

consuming. In addition, the proposed counting approach shows

substantial improvement compared to the Sahoo et al. [27]

method. We conduct a simulation study to an example used in Li

and Lu [29]. It is shown that the proposed method can recover all

of the true relationships. A simulation study for a larger scale

network is given in the supplementary material. In addition, the

proposed method is implemented on the MAPK pathway

example. It can recover 6 true relationships among seven

relationships, however, Li and Lu’s method only recovers one

true relationship in this example. In this real data example, the

new method shows a significant improvement in adopting a DAB

network for exploring the pathway.

Methods

To describe the model and notations, we adopted a simple

example used in Li and Lu [29] to illustrate the model assumption.

Figure 2 shows the relationships of the seven elements in this

example derived from the 13 states of Table 1. In the diagram, the

notation A?B denotes that A is a prerequisite of B and the

notation E{B denotes that B and E are similar. Note that A,:::,G
in Figure 2 are called elements. The definitions of prerequisite and

similar relationships for any two elements A and B are defined as

follows.

Assume that an element only has two levels, on or off. We use

‘‘0’’ and ‘‘1’’ to represent ‘‘off’’ and ‘‘on’’ states respectively. For

two elements A and B, A is a prerequisite for B if the on-state of A

is necessary for the on-state of B, and we denote it by A[B. When

A and B are on and off simultaneously, the relationship between A

and B is called similar and is denoted by A*B: We define �AA to be

the dual state of A. It means that �AA~0 when A~1.

Figure 2. Diagram of a directed acyclic Boolean network with
seven elements and twelve pair relationships. Only arrows
between covering pairs are shown.
doi:10.1371/journal.pone.0020074.g002

Figure 1. The PKC pathway in yeast. This figure is redraw from
Figure 1A in [1].
doi:10.1371/journal.pone.0020074.g001
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There are 4 possible situations for the prerequisite relationship,

and 2 possible situations for the similar relationship, see Table 2.

Totally, there are 6 possible relationships for any two genes. The

prerequisite relationship is a partial order. It is transitive on the

ground-set, namely, A[B and B[C implies A[C. The

notations ‘‘z’’ and ‘‘{’’ in Table 2 denote the possible states of

A and B and the impossible states of A and B under the

relationship, respectively.

Let (m00,m01,m10,m11) and (q00,q01,q10,q11) denote the counts

and probabilities corresponding to states (A,B)~(0,0),(0,1),(1,0)
and (1,1) without measurement error. From the possible

relationships shown in Table 2, we can propose a hypothesis

corresponding to each relationship. For example, the first similar

relationship in Table 2 is A*B, which means that the two

situations (A,B)~(0,0) and (A,B)~(1,1) hold. In this case, the

probability of the two situations, (A,B)~(0,1) and (A,B)~(1,0),
should be zero. Thus, its corresponding hypothesis is

q01~q10~0: Other situations follow a similar argument. The

hypotheses for the 6 relationships are presented in Table 3.

Under the measurement error model assumption, let (n00,
n01,n10,n11) and (r00,r01,r10,r11) denote the counts and probabil-

ities corresponding to states (A,B)~(0,0),(0,1),(1,0) and (1,1)
with misclassification probability p.

Because of the misclassification error, m00 may be split up into

four categories. We use the notations m00,00,m00,01,m00,10 and

m00,11 to represent the counts of four cells split from m00.

Analogous notations are defined for m01,m10 and m11. Conse-

quently, their generating probabilities are calculated as follows:

qij,kl~pDi{kDzDj{lD(1{p)2{Di{kD{Dj{lDqij . Here, we adopt the nota-

tion qij,kl analogous to mij,kl . The splitting counts and probabilities

implied by misclassification error are given in Tables 4 and 5.

Now we go back to the example of Figure 2 which includes 7

elements. There are a total of 27~128 states for a seven-element

network. Only thirteen of these states in Table 1 are compatible with

the twelve pairwise relationships in the above example. From Figure 2,

there are 12 true relationships between the elements, which are

C[G,A[G,A[C,A[�DD,A[E,

B*E,A[F ,F[G,C[�DD,A[B,C[F , �DD[G:
ð1Þ

Under the measurement error model assumption, we do not

directly observe the 13 states but observe states with measure

error. We aim to reconstruct the true pathway. A proposed

method is given in the following.

The two-step counting method
Suppose we have a sample S~(S1,:::,Sn) of size n for m genes

where Si~(o1,o2,:::om), oi~0 or 1. For example, in Table 1,

there is a sample of size 13 for seven genes. We propose a two-step

approach to recover their relationships.

The first step: counting
For a pair of genes, say A and B, we can count the numbers for

6 relationships in Table 2 for the n states. The relationships with a

counting number greater than a given threshold are regarded as

potential relationships.

If there are no measurement errors, it is reasonable to expect

that the counting number of two elements, say A and B, satisfying

the true relationship is exactly equal to n. However, since it

involves measurement errors, the counting number with respect to

the true relationship may not be exactly equal to n. For each pair

Table 1. The table of states for directed acyclic Boolean
network shown in Figure 2.

case 1 2 3 4 5 6 7 8 9 10 11 12 13

A 0 1 1 1 1 1 1 1 1 1 1 1 1

B 0 0 1 1 1 1 1 1 0 0 0 0 0

C 0 0 0 1 1 1 1 1 1 1 1 1 1

D 1 1 1 1 0 1 0 0 1 0 1 0 0

E 0 0 1 1 1 1 1 1 0 0 0 0 0

F 0 0 0 0 0 1 1 1 0 0 1 1 1

G 0 0 0 0 0 0 0 1 0 0 0 0 1

doi:10.1371/journal.pone.0020074.t001

Table 2. Patterns for the six pairwise relationships assuming exhaustive sampling and no measurement error.

A*B A*�BB A[B, �BB[�AA

A/B 0 1 A/B 0 1 A/B 0 1

0 + 2 0 2 + 0 + 2

1 2 + 1 + 2 1 + +

�AA[�BB, B[A A[BB, B[AA �AA[B, �BB[A

A/B 0 1 A/B 0 1 A/B 0 1

0 + + 0 2 + 0 + +

1 2 + 1 + + 1 + 2

doi:10.1371/journal.pone.0020074.t002

Table 3. The six pairwise between the two elements A and B.

Relationship Hypothesis

diagonal A*B q01~q10~0

similarity A*�BB q00~q11~0

A[B q01~0

triangular �AA[�BB q10~0

prerequisite A[�BB q00~0

�AA[B q11~0

doi:10.1371/journal.pone.0020074.t003
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of elements, we count the numbers satisfying the 6 relationships

respectively, say c1,:::,c6. Since we expect that the misclassification

probability is low, the counting number(ƒn) corresponding to the

true relationship should be close to n. Thus, we can select the

relationships with a counting number greater than a threshold.

The threshold selection is suggested as follows.

Threshold Selection. The suggested thresholds for the

similar and prerequisite relationships are

n((1{w)2zw2)

and

n((1{w)2zw(1{w)) ð2Þ

respectively, where w~pzza=2 p 1{pð Þ=nð Þ1=2
. Here, the miscla-

ssification error probability p can be assumed to be known from

empirical experiences. If p is unknown, the maximum likelihood

approach for estimating p is given in Appendix D in the materials

section.

The argument for the threshold selection is given in

Appendix A in the materials section. It is based on a confidence

bound approach associated with the counting number formu-

las. The approach is to derive the formulas for the two kinds of

relationships, and then uses a confidence interval approach to

obtain a lower bound for the counting number formulas. The

forms n((1{w)2zw2) and n((1{w)2zw(1{w)) are inferred by

the counting number formulas with misclassification probabil-

ity p, where w value is derived by a confidence bound

approach.

The second step: asymptotic p-value
Besides directly counting the relationships’ numbers, the second

step is to test the relationships in Table 3 using an asymptotic p-

value. Then we combine both steps to estimate the true

relationship between two elements.

The following simulation study shows that the two steps are

both essential for selecting the true relationship. If any one of the

steps is used solely in selecting the true relationship, the simulation

shows that it cannot select the true relationships very accurately.

The p-values derived for the 6 hypotheses with misclassification

probability p corresponding to the 6 relationships are listed as follows.

The derivations are given in Appendix B in the materials section.

For testing H0 : q01~q10~0 vs H1 : q 6 [H0, the asymptotic p-

value for large sample size n is

1{2W {D
n01zn10ð Þ=n{2p 1{pð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 1{pð Þp 1{2pz2p2ð Þ=n

p D

 !
,

where W is the cumulative distribution of the standard normal

random distribution. The asymptotic p-value for testing H0 : q00~

q11~0,H0 : q01~0,H0 : q10~0,H0 : q00~0, or H0 : q11~0, are

the forms of (10), (13),(14), (15) and (16), respectively, which are

given in Appendix B in the materials section.

The extremeness of the observed value for the test statistic

under the null hypothesis leads to a small p-value, which would

imply rejection of the null hypothesis. Thus, if the null hypothesis

is the true relationship, we expect to obtain a higher p-value. In

the second step, we also set a threshold for the asymptotic p-value

such that the relationships with asymptotic p-value greater than or

equal to the threshold are selected.

A large p-value indicates a larger possibility that the null

hypothesis holds. Note that the p-value is less than or equal to 1. In

this study, we use the threshold 1 for the p-value criterion in the

examples because the largest p-value for each relationship is one.

From the simulation study and the real data example discussed in

this study, setting 1 to be a threshold for p-value criterion can lead

to very accurate results. Note that for other examples, it is possible

that the largest p-value is not 1. In this case, we need to observe

the p-values to select a suitable threshold.

It is worth noting that the hypothesis testing procedure

corresponds to a confidence interval approach [30]. From the

confidence interval viewpoint, when the p-value is large enough

(close to 1) or small enough (close to 0), we have confidence to

accept or reject the null hypothesis. Therefore, in this study, when

p-value is 1, we have confidence to accept the null hypothesis.

The two-step method is described as follows.

Procedure for selecting the true relationship of m
elements

Step 1. For a sample of size n for m elements, calculate the

counting numbers for the 6 relationships of each pair of the

elements. Set a threshold for the counting numbers. Select the

relationships with a counting number greater than the threshold.

Step 2. For each pair of elements, derive the asymptotic p-

values for each relationship and set a threshold for the p-value.

Select the relationships with a asymptotic p-value greater than or

equal to the threshold.

Table 5. Splitting probabilities caused by misclassification error.

A/B 0 1

0 q00,00~(1{p)2q00 q00,01~p(1{p)q00 q01,00~p(1{p)q01 q01,01~(1{p)2 q01

q00,10~p(1{p)q00 q00,11~p2 q00 q01,10~p2 q01 q01,11~p(1{p)q01

1 q10,00~p(1{p)q10 q10,01~p2 q10 q11,00~p2 q11 q11,01~p(1{p)q11

q10,10~(1{p)2 q10 q10,11~p(1{p)q10 q11,10~p(1{p)q11 q11,11~(1{p)2 q11

doi:10.1371/journal.pone.0020074.t005

Table 4. Splitting counts caused by misclassification error.

A/B 0 1

0 m00,00 m00,01 m01,00 m01,01

m00,10 m00,11 m01,10 m01,11

1 m10,00 m10,01 m11,00 m11,01

m10,10 m10,11 m11,10 m11,11

doi:10.1371/journal.pone.0020074.t004
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Step 3. For each pair of elements, select the relationships

satisfying both criteria of Step 1 and Step 2. This relationship is

the estimated relationship for the two elements.

Note that it is possible to have more than one relationship

satisfying both criteria for two elements. But from a simulation

result and a real data application, it shows that in most situation,

there is only one relationship satisfying both criteria.

The asymptotic p-value has a closed form which can be easily

calculated and the counting number can also be easily calculated.

This shows that this method can provide a convenient way to

recover the biological pathway.

An Example
We revisit the example of Figure 2 to illustrate the counting

step. Assume that we only have a sample of the states for the 7

elements and we want to recover the 12 true relationships. Note

that there are totally C7
2~21 pairs of the 7 elements and there are

only 12 pairs with relationships in this example. When considering

the case without measurement error, we can reconstruct the

pathway from a sample using the counting number method if the

sample size is large enough. We can construct the Boolean

network for the example by identifying prerequisite or similar

relationships. From Table 1, we list the relationship corresponding

to the highest counting number for each pair as follows:

(A[B),cAB~13,(A[C),cAC~13,(A[�DD),cAD

~13,(A[E),cAE~13,

(A[F ),cAF~13,(A[G),cAG~13,(�BB[�CC),cBC

~12,(�BB[�DD),cBD~10,

(B*E),cBE~13,(�BB[F ),cBF ~10,(�BB[G),cBG

~12,(C[�DD),cCD~13,

(C[E),cCE~12,(C[F),cCF ~13,(C[G),cCG

~13,( �DD[G),cDG~13,

(D[E)(D[�EE)( �DD[E),cDE~10,(D[F )(D*�FF ),cDF~9,

(�EE[F ),cEF ~10,(�EE[G),cEG~12,(F[G),cFG~13,

where cAB denotes the counting number corresponding to the

indicating relationship (A[B).
If there is only one relationship corresponding to the highest

counting number, we list that one, such as (A[B); if there are

more than one relationship corresponding to the highest counting

number, we list all of the relationships, such as (D[E)(D[�EE)
( �DD[E). In the 21 pairs, the relationships corresponding to the

highest counting number 13 is the 12 true relationships, and the

relationships with the counting number less than 13 are not the

true relationships.

Comparison
We consider two existing methods for detecting the pairwise

relationships between any two elements. A simulation study is

conducted to compare the proposed method with the existing

methods for the measurement error case.

Existing methods
Li and Lu [29] proposed the directed acyclic Boolean network

to recover the genetic network. For any pair of element, they use

the EM algorithm to calculate the maximum likelihood estimator

of misclassification rate p under the multinomial distribution

model structure and adopt a criterion that requires a true

relationship to correspond to a small estimator of p in order to

select a relationship. Besides the disadvantage that the EM

algorithm is time-consuming, this method is also shown to be less

accurate than the counting method from a simulation study.

Another method for inferring the relationship of any two

elements is proposed by Sahoo et al. [27]. For any two genes A and

B, let n00, n01, n10 and n11 denote the numbers of the four states

(0,0), (0,1), (1,0) and (1,1) of (A,B), respectively from a sample.

For example, to infer whether the relationship A[B is true, they

use the following two statistics to test if the relation (A,B)~(0,1) is

true:

error rate~
1

2

n01

n00zn01
z

n01

n11zn01

� �

statistic~
expected{observedð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

expected
p

where ‘‘expected’’ and ‘‘observed’’ denote the values of (n01zn00)
|(n01zn11)=(n00zn01zn10zn11) and n01, respectively.

The relationship A[B in Sahoo et al. method is regarded as

true when the ‘‘error rate’’ value is less than 0.1 and ‘‘statistics’’

value is greater than 3 [27]. However, from our calculation, the

method may lead to inaccurate results when the sample size is not

large. For instance, suppose the number of experiments we

observed is 91 and the numbers of states corresponding to (0,1),

(0,0), (1,0) and (1,1) are 1, 30, 30 and 30 respectively, resulting in a

small ‘‘statistic’’ value of 2.94. Note that the state (0,1) indicates

that the relationship A[B does not hold. However, since the state

(0,1) only occurs once, it may be due to a measurement error. In

this case, the method does not select the relationship A[B. This

shows that the criterion is too conservative to select a potential

relationship when the sample size is not large enough.

Simulation
We conduct a simulation study using the example of Figure 2 with

13 compatible states (Table 1) in order to compare the proposed

method with the two existing methods. With a misclassification

probability 0.05, we generate 100 states for the simulation

comparison. Tables 6 and 7 show the counting numbers and p-

values for different relationships with a sample size of 100, respe-

ctively. Note that the notations H0110,H0011,H01,H10,H00,H11 in

Tables 6 and 7 denote the relationships in order in Table 3.

In this case, the maximum value for the counting number is 100

because the sample size is 100. As discussed in above, we can set a

threshold (2) for the counting number. In this case, the thresholds

for the similar and prerequisite relationships are 86 and 93. And

we set the threshold for the p-value to be 1 because the highest p-

value for each pair is 1 in this case. The relationships

corresponding to the hypotheses with a p-value 1 are the

candidates for the true relationship.

For any pair of the 7 elements, there are 6 possible

relationships of each pair. Since there are 21 pairs for the 7

Two-Step Counting Approach
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elements, there are totally 126 possible relationships. Using the

two thresholds set above, there are only 12 relationships satisfying

the conditions, which are exactly the true relationships (1). There

are many relationships among the 126 relationships satisfying

only one condition, but not both. For example, the relationships

H00 in (A,C) and H01 in (A,D) satisfy the counting number

condition, but not the p-value condition; the relationships H0110

and H11 in (D,F ) satisfy the p-value condition, but not the

counting number condition. It shows that any one of the two

steps is an important condition for identifying the true

relationships. In this case, we can recover all true relationships

using the proposed method.

Next, we implement the algorithm of Li and Lu [29] in the

simulated data. Since this algorithm does not provide a specific

threshold selection method, we adopt different thresholds and find

that the best situation is to recover 11 relationships . In this case,

one relationship A[G is misjudged to be A*G.

In order to compare the counting method with Sahoo et al.

[27], we implement their method in this simulated data. There

are only two relationships B*E and D[F recovered from their

method with ‘‘statistic’’ values 4.05 and 3.18, respectively. The

‘‘statistic’’ values for relationships of other pair elements are

smaller than 3, resulting in inaccuracy of identifying the other

true relationships. It shows that the method of [27] is less efficient

and accurate in recovering the true relationships than the

counting method from the simulation study for the case with

measurement error.

Beside the example with 7 elements, a more comprehensive

example with a larger network (Figure S1) that shows the

superiority of the proposed method is given in the supplementary

material.

Yeast expression data
We revisit the MAPK pathway example from the Introduction.

The datasets used in analyzing the MAPK pathway include 81

experimental data excluding two data with missing values, 57 from

Spellman et al. [31] and 26 from Zhu et al. [32] . The datasets from

Spellman et al. [31] include 18 data from the alpha factor

experiments, 14 data set from the Elutrtation experiments and 24

data sets from cdc15 experiments. The datasets from Zhu et al.

[32] include 25 data from Forkhead experiments. The raw data

can be download from the Stanford Microarray Database [33].

We adopt values corresponding to the Log(base2) column in the

raw dataset to reconstruct the MAPK pathway, which are log ratio

values of red to green signal.

A gene state is regarded as on state or off state when the log

ratio value of red to green signal is greater than or less than 0,

respectively. The gene expression data for the 81 experimental

data (Table S1) are given in the supplementary material.

In this study, we apply the two-step approach to explore the

expression profiles, and show exploratory results on the pathway.

The results are also compared with the Li and Lu’s method [29]

and Shaoo et al. method [27].

We implement the proposed method to the yeast cell cycle data

[31,32]. In our analysis, we assume that the level a~0:1.

According to the threshold selection formulas (2), the thresholds

for the similar and prerequisite relationships are 61 and 69,

respectively. And the threshold for the asymptotical p-value we

selected is 1.

According to the network structure reconstructed using our

proposed approach, we can see that Wsc2p and Mid2p activate

Rho1p, Pkc1p and Bck1p which results in activation of the

downstream of MAPK cascade, Mkk1p and Mlp1p. Activated

Table 6. The counting numbers for the 21 pairs in the 100
states under each relationship.

hypothesis H0110 H0011 H01 H10 H00 H11

(A, B) 55 45 98 57 90 55

(A, C) 72 28 95 77 93 35

(A, D) 51 49 93 58 95 54

(A, E) 56 44 98 58 90 54

(A, F) 54 46 98 56 90 56

(A, G) 26 74 99 27 89 85

(B, C) 51 49 64 87 83 66

(B, D) 46 54 70 76 77 77

(B, E) 91 9 95 96 52 57

(B, F) 51 49 76 75 71 78

(B, G) 53 47 92 61 55 92

(C, D) 35 65 76 59 94 71

(C, E) 50 50 86 64 84 66

(C, F) 72 28 98 74 72 56

(C, G) 42 58 98 44 72 86

(D, E) 43 57 74 69 79 78

(D, F) 37 63 72 65 81 82

(D, G) 37 63 87 50 66 97

(E, F) 50 50 76 74 72 78

(E, G) 52 48 92 60 56 92

(F, G) 66 34 98 68 48 86

doi:10.1371/journal.pone.0020074.t006

Table 7. The p-values for the 21 pairs in the 100 states under
each relationship.

hypothesis H0110 H0011 H01 H10 H00 H11

(A, B) 0.8207 0.0065 1 0 0.1358 0

(A, C) 1 0 1 0.0095 0.0680 0

(A, D) 0.1330 0.1511 0.7931 0 1 0

(A, E) 0.9228 0.0046 1 0 0.1201 0

(A, F) 0.7200 0.0092 1 0 0.1527 0

(A, G) 0 0.6534 1 1 0.7599 0.3630

(B, C) 0.9149 0.4654 0.0060 1 0.7636 0.0152

(B, D) 0.4237 1 0.6569 0.6504 0.9855 0.9855

(B, E) 1 0 0.8094 1 0 0

(B, F) 0.9994 0.8352 0.9990 0.9065 0.9118 0.9189

(B, G) 0.4376 0.1168 1 0 0 0.8556

(C, D) 0.0004 1 0.0268 0 1 0.0025

(C, E) 0.7452 0.6280 1 0.0058 0.9122 0.0165

(C, F) 1 0 1 0.0005 0.0014 0

(C, G) 0.0724 0.1689 1 0 0.0070 0.3746

(D, E) 0.1613 1 0.4171 0.4297 1 0.9031

(D, F) 0.0093 1 0.1226 0.1554 0.8975 1

(D, G) 0.0003 1 0.0377 0 0.0001 1

(E, F) 0.9367 0.9716 0.9702 0.7834 0.9965 0.9993

(E, G) 0.3662 0.1523 1 0 0 0.9043

(F, G) 1 0 1 0.0001 0 0.0110

doi:10.1371/journal.pone.0020074.t007
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Wsc2p also interacts with Mid2p. The functions of genes Swi4p,

Swi6p and Rlm1p in the downstream of the network are not

significant in our approach.

The reconstruction results of the DAB network using the two-

step approach and the method of Li and Lu [29] are illustrated in

Figure 3(a) and Figure 3(b), respectively. In addition, we also

implemented the method of Shaoo et al. [27] in this real yeast

data. The results show that there are no pair relationships

detected by the method of Shaoo et al. [27], because all

‘‘statistic’’ values are smaller than 3 for any two elements.

Therefore, compared with the methods in Li and Lu [29] and

Shaoo et al. [27], our proposed method is more useful for finding

the cascade relationship.

Discussion

For the implementation of the network reconstruction algo-

rithm, the greatest complexity lies in the computation of p-value

for every two elements. The number of all pair is n(n{1)=2 where

n is the number of elements. Therefore, the time complexity for

the proposed approach is O(n2) showing that the proposed

method is capable of handling thousands of genes simultaneously.

This study mainly focuses on reconstructing pathway by gene

expression. Although pathway reconstruction methods based on

gene expression have been widely discussed in the literature,

there is a limitation on the gene expression methods. A biological

pathway comprises more than genetic interactions alone. Long

chains of vents may happen on the protein level (e.g.

(de)activation by phosphorylation) which does not necessarily

have to be regulated via gene expression. Therefore, these gene

expression methods can be expected to reconstruct pathways that

are regulated via gene expression, but not other biological

interactions.

In summary, we propose a two-step approach to test the

biological pathways from noisy array data. This new method has

the advantages of easy calculation for the counting numbers and

simple closed forms of the p-value. From the simulation results,

we can see that this method can precisely estimate the true

relationships for most of the situations. Compared with the

other existing methods, it can provide a more accurate and

efficient alternative approach for reconstructing the biological

network.

Materials and Methods

Appendix A: Threshold Selection
(i) Suppose the misclassification probability is p. For a similar

relationship such as the case A*B, in this case, we have

m01~m10~0 and m00zm11~n: ð3Þ

With misclassification error, the counting number correspond-

ing to the relationship is

((1{p)2zp2)m00z2p(1{p)m01z2p(1{p)m10z((1{p)2zp2)m11:

By (3), the last equation is equal to n(p2z(1{p)2), which is the

mean of the counting number if this similar relationship holds.

Since we cannot expect that the counting number is always equal

to the mean, we look for a lower bound of the counting number as

a threshold. From the viewpoint of constructing confidence

interval, if p is unknown, a 1{a upper bound of p is

p̂pzza=2(p̂p(1{p̂p)=n)1=2, where p̂p is an estimator of p and za=2 is

the upper a=2 quantile of the standard normal distribution. The

bound d~p̂pzza=2(p̂p(1{p̂p)=n)1=2 is an upper bound of p. Then

1{d is a lower bound of 1{p. Here we replace p̂p by p in the

upper bound and suggest n(w2z(1{w)2), where w~pz
za=2(p(1{p)=n)1=2 as a threshold. We expect that the counting

number is greater than the threshold if the similar relationship holds.

Beside using the conventional confidence interval, we can also

consider some improved intervals discussed in literature [34–37].

(ii) Assume for two elements A and B, a prerequisite relationship

holds. In this case, we have

m01~0 and m00zm11zm10~n: ð4Þ

With misclassification errors, the counting number correspond-

ing to the relationship is

((1{p)2zp2)m00z2p(1{p)m01z2p(1{p)m10z

((1{p)2zp2)m11zp(1{p)m00zp2m01z(1{p)2m10zp(1{p)m11

ð5Þ

By (4), (5) is equal to

((1{p)2zp2)m00z2p(1{p)m10z

((1{p)2zp2)m11zp(1{p)m00z(1{p)2m10zp(1{p)m11

§((1{p)2zp(1{p))(m00zm11zm10)

~((1{p)2zp(1{p))n

ð6Þ

By a similar argument as in (i), we suggest ((1{w)2z
w(1{w))n as a threshold for the prerequisite relationship.

Appendix B: Computational details
The methods for testing the 6 hypotheses in Table 3 are listed as

following.

Figure 3. Some pairwise relationships identified by the two-
steps counting approach (a), and the Li and Lu method (b)
using the expression data of yeast Saccharomyces cerevisiae.
doi:10.1371/journal.pone.0020074.g003
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(i) For deriving the p-value of the test:

(ii)

H0 : q01~q10~0 vs H1 : q 6 [H0,

we can consider the following two different situations. Note that

the condition q01~q10~0 in hypothesis H0 is equivalent to

q01zq10~0 because q01§0 and q10§0.

(I) The misclassification probability p is zero.

The statistics

n01zn10ð Þ=n{ q01zq10ð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n01zn10ð Þ=n 1{ n01zn10ð Þ=nð Þ

p ð7Þ

has an asymptotic standard normal distribution under the null

hypothesis q01zq10~0.

(II) The misclassification probability p is greater than zero.

In this case, the mean and the variance of the random variable

are (n01zn10)=n is

E((n01zn10)=n)

~2p(1{p)(q00zq11)z(p2z(1{p)2)(q01zq10)

~2p(1{p)

ð8Þ

and

Var((n01zn10)=n)

~2(1{p)p(q00zq11)(1{2p(q00zq11)z2p2(q00zq11))=n

~2(1{p)p(1{2pz2p2)=n

ð9Þ

under the null hypothesis.

Consequently, the asymptotic p-value is

P DZDwD
n01zn10ð Þ=n{2p 1{pð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 1{pð Þp 1{2pz2p2ð Þ=n

p D

 !
,

which can be rewritten as (3).

(iii) For deriving the p-value of the test:

(iv)

H0 : q00~q11~0 vs H1 : q 6 [H0,

by an argument similar to (i), for pw0, the asymptotic p-value is

1{2W {D
n00zn11ð Þ=n{2p 1{pð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 1{pð Þp 1{2pz2p2ð Þ=n

p D

 !
: ð10Þ

(iii) For deriving the p-value of the test:

H0 : q01~0 vs H1 : q 6 [H0,

consider the case of pw0.

Under the null hypoyhesis, the mean and variance of the

statistics n01=n are

E(n01=n)

~p(1{p)(q00zq11)z(1{p)2q01zp2q10

~p((1{p){q10z2pq10)

ð11Þ

and

Var(n01=n)

~p((1{p){q10z2pq10)(1{p((1{p){q10z2pq10))=n
ð12Þ

under the null hypothesis.

The asymptotic p-value is

1{2W {D
n01=n{p 1{pð Þ{q̂q10z2pq̂q10ð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

p 1{pð Þ{q̂q10z2pq̂q10ð Þ 1{p 1{pð Þ{q̂q10z2pq̂q10ð Þð Þ=n
p D

 !
: ð13Þ

(iv) For deriving the p-value of the test:

H0 : q10~0 vs H1 : q 6 [H0,

by an argument similar to (iii), the asymptotic p-value is

1{2W {D
n10=n{p 1{pð Þ{q̂q01z2pq̂q01ð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

p 1{pð Þ{q̂q01z2pq̂q01ð Þ 1{p 1{pð Þ{q̂q01z2pq̂q01ð Þð Þ=n
p D

 !
: ð14Þ

(v) For deriving the p-value of the test:

H0 : q00~0 vs H1 : q 6 [H0,

by an argument similar to (iii), the asymptotic p-value is

1{2W {D
n00=n{p 1{pð Þ{q̂q11z2pq̂q11ð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

p 1{pð Þ{q̂q11z2pq̂q11ð Þ 1{p 1{pð Þ{q̂q11z2pq̂q11ð Þð Þ=n
p D

 !
: ð15Þ

(vi) For deriving the p-value of the test:

H0 : q11~0 vs H1 : q 6 [H0,

by an argument similar to (iii), the asymptotic p-value is

1{2W {D
n11=n{p 1{pð Þ{q̂q00z2pq̂q00ð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

p 1{pð Þ{q̂q00z2pq̂q00ð Þ 1{p 1{pð Þ{q̂q00z2pq̂q00ð Þð Þ=n
p D

 !
: ð16Þ

The estimators q̂qij of qij in the above formulas of asymptotic p-

values are given in Appendix C.

Appendix C: Frequency estimation
If the misclassification probability p is known, the methods for

estimating the probability q00, q00, q00 and q00 are listed as follows.

According to Table 5, we have

r00~(1{p)2q00zp(1{p)q01zp(1{p)q10zp2q11,

(13)

(14)

(15)

(16)

Two-Step Counting Approach

PLoS ONE | www.plosone.org 8 June 2011 | Volume 6 | Issue 6 | e20074



r01~p(1{p)q00z(1{p)2q01zp2q10zp(1{p)q11,

r10~p(1{p)q00zp2q01z(1{p)2q10zp(1{p)q11,

r11~p2q00zp(1{p)q01zp(1{p)q10z(1{p)2q11

Note that r00zr01zr10zr11~1 and q00zq01zq10zq11~1.

By solving the above equations, we have

q00~
1

1{2pð Þ2
1{pð Þ2r00zp p{1ð Þr01zp p{1ð Þr10zp2r11

h i
,

q01~
1

1{2pð Þ2
p p{1ð Þr00z 1{pð Þ2r01zp2r10zp p{1ð Þr11

h i
,

q10~
1

1{2pð Þ2
p p{1ð Þr00zp2r01z 1{pð Þ2r10zp p{1ð Þr11

h i
,

q11~
1

1{2pð Þ2
p2r00zp p{1ð Þr01zp p{1ð Þr10z 1{pð Þ2r11c
h i

The derived values are used as estimators for qij .

Appendix D: Misclassification probability estimation
If p is unknown, we can apply the maximum likelihood

approach to estimate p. By Table 5, we can rewrite the

multinomial model for the observations nij ,i,j~0,1 in terms of p

and other parameters. The maximum likelihood approach for

deriving the maximum likelihood estimator of p is based on the

likelihood function

n00zn10zn01zn11ð Þ!
n00!n10!n01!n11!

r
n00
00 r

n01
01 r

n10
10 r

n11
11 , ð17Þ

where rij ,i,j~0,1. This involve p and other parameters,

qi,j ,i,j~0,1, given in Appendix C. The maximum likelihood

approach is to find the maximum likelihood estimators of p̂p and

qi,j ,i,j~0,1 such that the estimators can maximize the likelihood

function (17) [29].
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