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a b s t r a c t

In the nucleotide substitution model for molecular evolution, a major task in the exploration of an
evolutionary process is to estimate the substitution number per site of a protein or DNA sequence. The
usual estimators are based on the observation of the difference proportion of the two nucleotide
sequences. However, a more objective approach is to report a confidence interval with precision rather
than only providing point estimators. The conventional confidence intervals used in the literature for
the substitution number are constructed by the normal approximation. The performance and construc-
tion of confidence intervals for evolutionary models have not been much investigated in the literature.
In this article, the performance of these conventional confidence intervals for one-parameter and
two-parameter models are explored. Results show that the coverage probabilities of these intervals are
unsatisfactory when the true substitution number is small. Since the substitution number may be small
in many situations for an evolutionary process, the conventional confidence interval cannot provide
accurate information for these cases. Improved confidence intervals for the one-parameter model with
desirable coverage probability are proposed in this article. A numerical calculation shows the substantial
improvement of the new confidence intervals over the conventional confidence intervals.

� 2011 Elsevier Inc. All rights reserved.
1. Introduction

A basic process in the evolution of DNA sequences is the
substitution of one nucleotide for another during evolution. But
since the substitution of one allele for another in a population gen-
erally takes thousands of years or longer to complete, the process
cannot be directly observed. Thus, to detect evolutionary changes
in a DNA sequence, we need to compare two sequences that have
descended from a common ancestral sequence. If two sequences of
length L differ from each other at X sites, the proportion of differ-
ences, X/L, is referred to as the observed or uncorrected divergence.
When the degree of divergence between the two sequences com-
pared is small, the chance for more than one substitution to have
occurred at a site is negligible, and the number of observed differ-
ences between the two sequences is close to the actual number of
substitutions. However, if the degree of divergence is substantial,
the observed number of differences is likely to be smaller than
the actual number of substitutions due to multiple hits at the same
site. Many methods have been proposed to correct for multiple hits
(Holmquist, 1971; Jukes and Cantor, 1969; Kaplan and Risko, 1982;
Kimura, 1980, 1981; Lanave et al., 1984). The simplest and most
frequently used models are the Jukes and Cantor (1969) one-
parameter model and the Kimura (1980) two-parameter model
ll rights reserved.
(Graur and Li, 1999). For a DNA sequence, the Jukes and Cantor
one-parameter model assumes that substitutions occur with equal
probability, say a, among the four nucleotide types, A, T, C, G. Since
the time of divergence between two sequences is usually un-
known, we cannot estimate a directly. Instead, we compute K,
the number of substitutions per site since the time of divergence
between the two sequences. In the one-parameter model case,
K = 2(3at), where 3at is the expected number of substitutions per
site in a single lineage. Jukes and Cantor (1969) derived the follow-
ing formula:

K ¼ �3
4

ln 1� 4
3

p
� �

ð1Þ

where p is the probability that the two sequences are different at a
site at time t. They proposed the estimator

K1 ¼ �
3
4

ln 1� 4
3

p̂
� �

ð2Þ

to estimate K, where p̂ ¼ X=L is the observed proportion of different
nucleotides between the two sequences.

The variance of K can be approximated by

VðKÞ ¼ p� p2

L 1� 4
3 p

� �2 :
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By Kimura and Ohta (1972), an estimator for the variance of K is

VðK1Þ ¼
p̂� p̂2

L 1� 4
3 p̂

� �2 :

Although the Jukes and Cantor model is a simple model and
many substitution models have been constructed in the literature
to compete with it, it is still widely-used due to its simplicity and
adaptability for many applications (Fu, 1995; Wirgart et al., 1998;
Rosenberg, 2005; Chor et al., 2006, etc.).

In the case of the two-parameter model, the differences be-
tween two sequences are classified into transitions and transver-
sions. Transitions are changes between A and G (purines) or
between C and T (pyrimidines). Transversions are changes between
a purine and a pyrimidine. The substitute probabilities of transition
and transversion are assumed to be different. Let p̂ ¼ X1=L and
Q̂ ¼ X2=L be the observed proportions of transitional and transver-
sional differences between the two sequences, respectively, where
X1 and X2 are the numbers of transitional and transversional differ-
ences between the two sequences. By Kimura (1980), the number
of nucleotide substitutions per site between the two sequences, K2,
is estimated by

K2 ¼
1
2

ln
1

1� 2bP � bQ
 !

þ 1
4

ln
1

1� 2bQ
 !

and the sampling variance is approximately given by

VðK2Þ ¼
1
L

bP 1

1� 2bP � bQ
 !2

þ bQ 1

2� 4bP � 2bQ þ 1

2� 4bQ
 !2

0@
�

bP
1� 2bP � bQ þ

bQ
2� 4bP � 2bQ þ

bQ
2� 4bQ

 !2
1A: ð3Þ

Since the above two variance estimators underestimate the true
variances in most mircumstances, Wang et al. (2008) derive im-
proved variance estimators using a higher-order Taylor expansion
and empirical methods.

The above illustration is under the assumption that the rate of
nucleotide substitution is the same for all nucleotide sites. How-
ever, this assumption may not hold in some situations because
the nucleotide sequences have functional constraints and usually
form a secondary structure consisting of loops and stems that have
different substitution rates. Kocher and Wilson (1991), Tamura and
Nei (1993) and Wakeley (1993, 1994) suggest that the substitution
rate varies from site to site according to the gamma distribution for
this case.

When the nucleotide substitution at each site follows the Jukes
and Cantor model but the substitution rate 3a varies with the gam-
ma distribution C(a, b), by Golding (1983) and Nei and Gojobori
(1986), the expected number of substitutions per site becomes

H ¼ 3
4

a 1� 4
3

p
� ��1=a

� 1

" #

and the variance for the number of the substitutions per site is

VðHÞ ¼ pð1� pÞ
n

1� 4
3

p
� ��2ð1=aþ1Þ
" #

where a is the shape parameter of the gamma distribution with the
density function f(x) = [ba/C(a)]e�bxxa�1. Note that H and V(H) de-
pend on only one parameter of the gamma distribution, but not
the two parameters a and b because a/b is the mean of the substi-
tution rate 3a, and b is a function of a and a (Nei and Gojobori,
1986).
The estimators

H1 ¼
3
4

a 1� 4
3

p̂
� ��1=a

� 1

" #

and

VðH1Þ ¼
p̂ð1� p̂Þ

L
1� 4

3
p̂

� ��2ð1=aþ1Þ
" #

are used to estimate H and V(H).
The true number of substitutions per site is usually approxi-

mated by point estimators. However, from a statistical point of
view, a better approach is to report a confidence interval of the
substitution number instead of a point estimator for the number
of substitutions because the point estimation can only provide a
rough estimate without any information about its precision. The
confidence interval estimation can quantify the uncertainty associ-
ated with the estimate such that we can have the confidence de-
gree if the true K or H is belonged to the intervals. In many
studies, the confidence intervals are reported associated with the
point estimation, e.g. Yang (2007). The conventional confidence
interval is constructed using the normal approximation, which
can achieve the desirable coverage probability when the sample
size is large enough. Here the sample size is the length of a se-
quence. However, even when the length is large, from the study
shown in Section 2, the conventional confidence interval suffers
from the serious drawback of unsatisfactory coverage probability
when the true substitution number is small. Since in the evolution-
ary process of DNA sequences, the true substitution number per
site may be very small, the behavior of a confidence interval for
the small substitution number case is especially important.
Accordingly, the information provided by the conventional confi-
dence interval is not very accurate.

In this article, modified confidence intervals for the one-param-
eter model with more satisfactory coverage probability are pro-
posed in both constant substitution rate and variable substitution
rate models. These modified confidence intervals are constructed
from a modification approach used in the literature for construct-
ing confidence intervals of a binomial proportion.

This article is organized as follows. The coverage probability
and expected length of the conventional confidence interval for
substitution models with constant substitution rate and variable
substitution rate are shown in Section 2. Section 3 gives the pro-
posed confidence intervals as well as their performances. Section
4 provides an algorithm for selecting a factor such that the cover-
age probability of the confidence interval is close to a desirable le-
vel. The proposed methods are illustrated by a real data example
analyzing the substitution number of owlet-nightjars species in
Section 5. The article concludes in Section 6 with a summary.

2. The existing methods

We first consider the constant substitution rate case. A statisti-
cal interval ðLðp̂Þ;Uðp̂ÞÞ is said to be a level 1 � c confidence interval
of K if it can cover the true K with at least probability 1 � c, which
is defined as

PKðLðp̂Þ < K < Uðp̂ÞÞP 1� c:

The probability PKðLðp̂Þ < K < Uðp̂ÞÞ is the coverage probability of
the confidence interval, and EKðjUðp̂Þ � Lðp̂ÞjÞ is the expected length
of the confidence interval under the true substitution number K.
Usually the coverage probability of a level 1 � c confidence interval
we constructed based on the normal approximation may not be
equal to 1 � c and may be close to the nominal level 1 � c only
when the sample size is large. Furthermore, its coverage probability



One−parameter model, L=100

K

co
ve

ra
ge

 p
ro

ba
bi

lit
y

0.00 0.01 0.02 0.03 0.04 0.05 0.06

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0.00 0.01 0.02 0.03 0.04 0.05 0.06

0.
2

0.
4

0.
6

0.
8

1.
0

One−parameter model, L=500

K

co
ve

ra
ge

 p
ro

ba
bi

lit
y

Fig. 1. The coverage probabilities of the level 0.95 confidence intervals (6) when
L = 100 and 500 for K 6 0:06.
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could be far away from the nominal level 1 � c for a fixed sample
size. We usually evaluate confidence intervals in terms of their cov-
erage probabilities. A confidence interval with coverage probability
close to the nominal level is regarded as better than a confidence
with coverage probability far away from the nominal level.

In the Jukes and Cantor one-parameter model, when the substi-
tution rate is assumed to be the same for all sites, the conventional
confidence interval is constructed by the normal approximation
that the statistic

K1 � Kffiffiffiffiffiffiffiffiffiffiffiffiffi
VðK1Þ

p ð4Þ

has an asymptotic standard normal distribution. By inverting from
the probability

P
jK1 � Kjffiffiffiffiffiffiffiffiffiffiffiffiffi

VðK1Þ
p < z1�c

2

 !
¼ 1� c; ð5Þ

we have the level 1 � c conventional confidence interval

ðK1 � z1�c
2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
VðK1Þ

p
;K1 þ z1�c

2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
VðK1Þ

p
Þ; ð6Þ

where z1�c/2 is the upper 1 � c/2 cutoff point of the standard nor-
mal distribution.

Note that the equality in (5) only holds when L is large enough.
Consequently, the coverage probability of (6) is not exactly equal
to 1 � c for a fixed sample size. We explore its coverage probability
by a simulation study.

When the substitution rate is assumed to follow the gamma dis-
tribution with shape parameter a, a confidence interval con-
structed by the usual normal approximation uses the fact that
the statistic

H1 � Hffiffiffiffiffiffiffiffiffiffiffiffiffi
VðH1Þ

p ð7Þ

has an asymptotic standard normal distribution. Consequently, we
have the level 1 � c conventional confidence interval

ðH1 � z1�c
2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
VðH1Þ

p
;H1 þ z1�c

2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
VðH1Þ

p
Þ ð8Þ

We conduct a simulation to explore their coverage probability.
For the constant substitution rate case, the simulation method is to
generate two descendant sequences from an ancestral sequence.
First we set a value for at, say v0, then generate descendant se-
quences with probability 1/4 + 3/4e�4at that the nucleotide at a site
in a descendant sequence is the same as that in an ancestral se-
quence and with probability 1/4 � 1/4e�4at that the nucleotide at
a site in a descendant sequence is equal to one of the three other
bases from the ancestral sequence. Then we compute the propor-
tion of the different nucleotide in these two descendant sequences
and use the proportion as p̂ to derive K1 and V(K1). To derive the
coverage probability of the confidence interval, it is necessary to
calculate the proportion if the true K = 2(3at) belongs to the inter-
val from a simulation study. We replicate the above process 1000
times in generating the sequences and deriving K1, and then calcu-
late the proportion that the interval based on K1 covers the true K.

The proportion is the coverage probability of the confidence
interval approximated by the simulation. The simulation for the
Kimura two-parameter model is to generate the descendant se-
quences from a common origin using the probability setup for
the two-parameter model. By using a method similar to the one-
parameter model, we can derive the coverage probability for the
two-parameter model. The model and simulation approach are re-
ferred to Graur and Li (1999), Nei and Kumar (2000) and Yang
(2007).

For the variable substitution rate case, the simulation method is
that for each site, we generate a0 = 3a value from a gamma
distribution C(a, b) for each site, then use these a0/3 values as
the substitution rate to generate two descendant sequences from
an ancestral sequence. Then by a similar argument as the constant
substitution rate case, the coverage probability of a confidence
interval for H = 2(a/b) can be calculated.

Figs. 1 and 2 plot the coverage probability and expected length
of the confidence interval (6) corresponding to different K values,
which shows that the coverage probability of the conventional
confidence interval is much lower than the nominal level when
L = 100 and 500 for K 6 0:06.

In the Kimura two-parameter model, by an argument similar to
that in the one-parameter model, the 1 � c level confidence inter-
val of K2 is

ðK2 � z1�c=2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
VðK2Þ

p
;K2 þ z1�c=2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
VðK2Þ

p
Þ: ð9Þ

Fig. 3 shows the coverage probabilities of the confidence inter-
vals for L = 100 and 500 when the expected substitution number
per site is less than 0.11.

The coverage probability, increasing as K increases, of the inter-
val (6) for the Jukes Cantor model is much lower than the nominal
level 0.95 when the true K is small. Note that the coverage proba-
bility is not a very smooth curve of K shown in Fig. 1 because X is a
discrete random variable which leads to the oscillation of the cov-
erage probability. We can see that the performance of the conven-
tional confidence interval is not satisfactory because its coverage
probability cannot reach the nominal level. This is the same as
the Kimura two-parameter model, where the coverage probability
is much lower than the nominal level 0.95.

In fact, the performance of the conventional confidence interval
for the two-parameter model is even worse. For the one-parameter
model, Fig. 1 shows that the coverage probability increases to 0.95
when L increases. However, from Fig. 3, the deviation of the cover-
age probability to the nominal level 0.95 multiplies when L in-
creases. This indicates that the confidence interval constructed
for the two-parameter model is less satisfactory in estimating the
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Fig. 2. The expected lengths of the level 0.95 confidence intervals (6) when L = 100
and 500 for K 6 0:06.
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Fig. 3. The coverage probabilities of the level 0.95 confidence intervals (9) for
L = 100 and 500 for K 6 0:11. Here the substitution probability of transition is fixed
at 0.05, and of the substitution probability of transversion ranges from 0 to 0.03.
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true K. This drawback may be due to the bias of the estimator K2.
Accordingly, we mainly focus on constructing improved confidence
intervals based on the one-parameter model in this article.

It is worth noting that there are other approaches such as
the bootstrap method and jackknife method for constructing
confidence intervals in phylogenetic study (Dopazo, 1994,
etc.). However, these methods cannot provide a closed form.
In this study, we aim to establish improved closed form inter-
vals such that they can be easily implemented in real
applications.

3. New confidence interval

It is not surprising that the coverage probability of the conven-
tional confidence interval goes to zero as K goes to zero. This phe-
nomenon also commonly occurs in a simple model, the binomial
distribution (see Agresti and Coull, 1998; Wang, 2007). In the
one-parameter and two-parameter models, the parameters of
interest are functions of the binomial proportion p. Since there
are several approaches in the literature to modify the conventional
confidence interval such that the coverage probability for small p
can be improved, we extend these approaches to the one-parame-
ter model.

Both models for the constant substitution rate and variable sub-
stitution rate are considered.

3.1. Constant substitution rate

First we deal with the model that the substitution rate is as-
sumed to be the same for each site.

The first method is the extension from the score approach. The
score 1 � c confidence interval for the binomial proportion of a
binomial distribution is constructed by inverting from the set
fp : jx=n� pj=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pð1� pÞ=n

p
6 z1�c=2g. The endpoints of the score

confidence interval are the two solutions of p found by solving
the equation ðx=n� pÞ2=ðpð1� pÞ=nÞ ¼ z2

1�c=2. By a similar
argument, the score interval for K is obtained by inverting from
the set

fjK1 � Kj=
ffiffiffiffiffiffiffiffiffiffiffi
VðKÞ

p
6 z1�c=2g: ð10Þ

Note that by (1), we have

p ¼ 3=4ð1� e�4=3KÞ: ð11Þ

Replacing it in V(K), we have

VðKÞ ¼ 3ð�3þ 2e4K=3 þ e8K=3Þ
16L

: ð12Þ

The score confidence interval can be derived by replacing (12) in
(10) and then solving the equation

ðK1 � KÞ2=VðKÞ ¼ z2
1�c=2 ð13Þ

in K. However, the above equation does not have a closed
form, which would need to be solved by a numerical calcula-
tion. To prevent this disadvantage, which may cause the
inconvenience of usage of the interval, we can use the Taylor
expansion to approximate the terms e4K/3 and e8K/3 in (12) by
1 + 4K/3 and 1 + 8K/3 because the substitute number should
be small. Consequently, the variance can be approximated
by K/L. Replacing the approximated variance in (13) and solv-
ing the equation, we have the approximated 1 � c score con-
fidence interval

2K1Lþ z2
1�c=2�z1�c=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4K1Lþz2

1�c=2

q
2L

;
2K1Lþz2

1�c=2þ z1�c=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4K1Lþ z2

1�c=2

q
2L

0@ 1A:
ð14Þ

The second approach is an extension of the Agresti and Coull
approach (1998) to modify the confidence interval (6) by replacing
X and L by X þ z2

1�c=2=2 and Lþ z2
1�c=2=2, respectively. Let
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Fig. 5. Solid and dashed lines present the expected lengths for the level 0.95 score
and adjusted confidence intervals, respectively when L = 100 and L = 500 for
K 6 0:06 for the constant substitution rate case.

476 H. Wang / Molecular Phylogenetics and Evolution 60 (2011) 472–479
^̂p ¼
X þ z2

1�c=2=2

Lþ z2
1�c=2

;Kc
1 ¼ �

3
4

ln 1� 4
3

^̂p
� �

and VcðK1Þ

¼
^̂p� ^̂p2

L 1� 4
3

^̂p
� �2 :

The interval is proposed to have the form

ðKc
1 � z1�c=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VcðK1Þ

q
;Kc

1 þ z1�c=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VcðK1Þ

q
Þ: ð15Þ

This approach can successfully increase the coverage probability
when K goes to zero. We call this interval an adjusted confidence
interval.

To compare the intervals, we conduct a simulation to explore
their coverage probabilities and expected lengths, as shown in Figs.
4 and 5.

The comparison of the two proposed level 0.95 confidence
intervals of K for L = 100 and 500 is shown in Figs. 4 and 5 for small
K. The solid and dashed lines represent the coverage probabilities
of level 0.95 score and adjusted confidence intervals in Fig. 4.
The coverage probability of a good confidence interval should be
very close to 0.95 for any K. The simulation results show that the
new confidence intervals substantially improve the coverage prob-
ability when K is small, compared with the conventional confi-
dence interval. We also conduct a simulation for larger, L such as
L = 2000. They have similar performance as the above cases that
the coverage probability of the adjusted interval is higher than
the score interval.

The comparison of the expected lengths of the three confidence
intervals shows the conventional confidence interval has the short-
est expected length. In the criterion of evaluating a confidence
interval, although we prefer a confidence interval with shorter ex-
pected length, the most important thing is to evaluate its coverage
probability performance. A conventional interval, with a smaller
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Fig. 4. Solid and dashed lines present the coverage probabilities for the level 0.95
score and adjusted confidence intervals, respectively when L = 100 and L = 500 for
K 6 0:06 for the constant substitution rate case.
expected length, has poor coverage probability because it cannot
cover the true K with desirable frequency.

For the performance of the two new intervals, the simulation
study shows that the adjusted interval always has higher coverage
probability and longer expected length than the score confidence
interval. In this case, we would prefer the score confidence interval
because its average coverage probability is closer to the nominal
level when the true K is small.

When the true K is not small, the performance of the two new
intervals is shown in Fig. 6. The coverage probability of the ad-
justed interval is close to the nominal level 0.95, but the coverage
probability of the score interval is lower than 0.95. The perfor-
mance of the score interval is worse than the adjusted interval
when the true K is not small. We recall the method used to con-
struct (14) is to approximate e4K/3 and e8K/3 by 1 + 4K/3 and
1 + 8K/3, respectively, in (12) and (13). The approximation is only
appropriate when K is small. When K is not small, to derive a
more accurate score interval, a better approximation for e4K/3 is
using a Taylor expansion up to the second order term 1 + 4K/
3 + (4K/3)2/2 or up to a higher order term. We also can derive
the score interval by a numerical method to solve (13). Thus,
when we do not have information about the range of the true
K, we recommend the adjusted interval, or using a more accurate
score interval.

Note that according to Wang et al. (2008), there exist better var-
iance estimators for the variance of K in the one-parameter and
two-parameter models instead of the variance estimators V(K1)
and V(K2). Consequently, we can replace the usual variances in
(6), (9) by the improved variances proposed in Wang et al.
(2008) to construct another confidence interval. However, this
method cannot substantially improve the coverage probability
when the true K is small from a simulation study. Thus, to improve
the coverage probability, we propose the score approach and the
adjusted approach to construct new confidence intervals.
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Fig. 6. Solid and dashed lines present the expected lengths for the level 0.95 score
and adjusted confidence intervals, respectively when L = 100 and L = 500 for K 6 0:3
for the constant substitution rate case.

0.
70

0.
80

0.
90

1.
00

variable substitution rate, L=500

H

co
ve

ra
ge

 p
ro

ba
bi

lit
y

0.01 0.02 0.03 0.04 0.05

0.01 0.02 0.03 0.04 0.05

0.
80

0.
85

0.
90

0.
95

1.
00

variable substitution rate, L=1000

H
co

ve
ra

ge
 p

ro
ba

bi
lit

y

Fig. 7. Solid and dashed lines present the coverage probabilities for the level 0.95
standard and adjusted confidence intervals, respectively when L = 500 and L = 1000
for H 6 0:05 for the variable substitution case.
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Fig. 8. Solid and dashed lines present the expected lengths for the level 0.95
standard and adjusted confidence intervals, respectively when L = 500 and L = 1000
for H 6 0:05 for the variable substitution case.
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3.2. Variable substitution rate

We proceed to consider the Juke and Cantor model when the
substitution rate is assumed to follow a gamma distribution
C(a, b) with a shape parameter a.

For this case, applying the score approach leads to a messy for-
mula for the confidence interval of H because the endpoints of the
interval are approximated by solving a polynomial equation with
degree 3 after simplification. Although it is hard to provide a closed
form for the score interval of H, it is feasible to derive the confi-
dence interval by numerical calculation.

In this case, the second approach, the adjusted approach, may
be simpler and more useful here. The adjusted confidence interval
is constructed by replacing H1 and V(H1) in (8) as

Hc
1 ¼

3
4

a 1� 4
3

^̂p
� ��1=a

� 1

" #

and

VðHc
1Þ ¼

^̂p 1� ^̂p
� �

L
1� 4

3
^̂p

� ��2ð1=aþ1Þ
" #

;

respectively.
This leads to the confidence interval

ðHc
1 � z1�c

2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
VðHc

1Þ
q

;Hc
1 þ z1�c

2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
VðHc

1Þ
q

Þ: ð16Þ

To compare the performance of the intervals, we conduct a sim-
ulation study to compare their coverage probabilities and expected
lengths, which are shown in Figs. 7 and 8.

The comparisons of the standard and proposed level 0.95 confi-
dence intervals of H for L = 500 and 1000 are shown in Figs. 7 and 8.
Here we consider the longer sequence lengths L = 500 and 1000
instead of L = 100 and 500 in the constant substitution rate case
because the estimation for the variable substitution rate case is
more unstable than that for the constant substitution rate case.
The solid and dashed lines represent the coverage probabilities of
level 0.95 standard and adjusted confidence intervals in Fig. 7 for



Table 1
The average coverage probabilities of the level 95% conventional interval and adjusted
interval for 0 < K < 0.06 in the variable substitution model.

L Conventional interval Adjusted interval

500 0.858 0.985
1000 0.891 0.975
2000 0.913 0.97

Table 2
The level 95% conventional, score and adjusted confidence intervals for sequences
AY090696 and AY09069.

Conventional confidence interval (0.0001, 0.0145)
Score confidence interval (0.0028, 0.01875)
Adjusted confidence interval (0.0021, 0.0195)
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H 6 0:05. The coverage probability of the standard confidence
interval is clearly lower than the nominal level, which reveals
the same disadvantage as in the constant substitution rate case.
The adjusted confidence interval has higher coverage probability.
Although it seems higher than the nominal level, we still prefer
the adjusted confidence interval because its minimum coverage
probability is near the nominal level 0.95. As we expect, the ex-
pected length of the adjusted confidence interval is longer than
that of the standard confidence interval because the adjusted con-
fidence interval has higher coverage probability. The simulation re-
sults of L = 500 and L = 1000 reveal that the intervals has better
performance when the length L increases.

The average coverage probabilities of the proposed interval and
the conventional interval are included in Table 1 to support the
advantages of the proposed confidence intervals. Table 1 shows
the coverage probabilities of the level 0.95 conventional interval
and the level 0.95 adjusted interval for K in (0, 0.06) in the variable
substitution model for different lengths. It reveals that the average
coverage probability of the adjusted interval is closer to the nom-
inal level 0.95 than the conventional interval.
4. Selection of c value

Although the coverage probabilities for the new confidence
intervals can be substantially improved over the conventional
interval when the true K or H is small, Figs. 4–7 show that they still
cannot reach the nominal level 0.95 for all p. Since the conven-
tional and new confidence intervals are constructed based on the
normal approximation, when the sample size is not large enough,
their performance may not be good enough. To prevent this prob-
lem from occurring at the small sample size case, we propose an
algorithm that is modified from algorithms in Wang (2007, 2009)
to select an appropriate c values in (14)–(16) such that the mini-
mum coverage probability or the average coverage probability
can reach a desirable level. The minimum coverage probability de-
notes the minimum value of the coverage probability of a confi-
dence interval when K ranges over the domain. The average
coverage probability denotes the average value of the coverage
probability with respect to a prior for K under the Bayesian setup.
The details are referred to Wang (2009).

For the model with constant substitution rate, we can first con-
sider the minimum coverage probability criterion. To construct a
modified confidence interval by applying the algorithms in Wang
(2007, 2009), first we transform the confidence interval of K to
the confidence interval of p. By (1), K is a one-to-one function of
p, where p can be expressed as (11) in terms of K. Thus, for a level
1 � c confidence interval (L(X), U(X)) of K, we can make a transfor-
mation such that the interval (3/4(1 � e�4/3L(X)), 3/4(1 � e�4/3U(X)))
is a level 1 � c confidence interval of p. If we hope to obtain a
confidence interval with a minimum coverage probability 0.95,
then we can select an appropriate z1-c/2 by using a procedure
modified from Wang (2007).

The algorithm of the modified procedure in Wang (2007) is as
follows. Since the length of the sequence is L, the possible values
of observed X are {0, 1, . . . , L}. To adopt the procedure, the
confidence interval needs to satisfy the assumption that
3/4(1 � e�4/3L(X)) and 3/4(1 � e�4/3U(X)) are increasing functions of
X (Wang, 2010). In addition to this increasing condition, from (2),
since the log function must define on a positive domain, it needs
to require that X/L is less than 3/4. Thus, we have to check if
3/4(1 � e�4/3L(X)) and 3/4(1 � e�4/3U(X)) are increasing functions of
X for X 6 3=4L. By checking the three confidence intervals (6, 14,
and 15) in the one-parameter model, we found that only the score
interval (14) satisfies the assumption. Therefore, we modified the
score interval using the following procedure to select a c value in
the confidence interval (14) such that the confidence interval has
minimum coverage probability 0.95.

Algorithm 1. Procedure to derive a factor in a score confidence
interval (L(X), U(X)) with the form (14) such that the confidence
interval has a minimum coverage probability 0.95.
Step 1. Let (L (X), U (X)) = (3/4(1 � e ), 3/4(1 � e )) .
Step 2. Calculate the endpoints L�(X) and U�(X) for x e
⁄ ⁄ �4/3L(X) �4/3U(X)

{0, 1, . . . , [3/4L]}, where [w] denotes the largest integer less
than w. Then list the endpoints L�(X) and U�(X) that are greater
than zero and smaller than 1.
Step 3. Calculate the coverage probabilities for p in the set of
endpoints of Step 2 which are greater than zero and smaller
than 1. The minimum value of these coverage probabilities is
the minimum coverage probability of the confidence interval.
The details refer to Wang (2007, 2009).
Step 4. Find the c value such that the minimum coverage prob-
ability derived in Step 3 is equal to 0.95. Then the confidence
interval (L(X), U(X)) with this c value is the confidence interval
with a minimum coverage probability 0.95.

The confidence level 0.95 in the algorithm can be replaced by
other values depending on the precision we prefer.

For a model with variable substitution rate, we can consider the
average coverage probability criterion. An argument similar to that
in Wang (2009) can be used to construct a confidence interval of H
such that it has the desirable average coverage probability with re-
spect to a prior.

5. Illustrative example

We use the DNA sequences of the avian family Aegothelidae
(commonly known as owlet-nightjars) to illustrate the proposed
approaches. Owlet-nightjars are small nocturnal birds related to
the nightjars and frogmouths. Most are native to New Guinea,
but some species extend to Australia, Moluccas, and New Caledo-
nia. There is a single monotypic family Aegothelidae with the
genus Aegotheles. The family Aegothelidae comprises only nine ex-
tant species, all in a single genus, Aegotheles.

Dumbacher et al. (2003) used mitochondrial DNA sequence to
construct a phylogeny of the owlet-nightjars. They analyzing
mtDNA sequences cytochrome b and ATPase subunit 8 suggests
that there are 11 living species of owlet-nightjar and one that went
extinct early in the second millennium AD. The taxon listed in Ta-
ble 2 of Dumbacher et al. (2003) includes albertisi albertisi, wallacii
wallacii, wallacii gigas, etc. The Genbank numbers for the se-
quences are AY090664-AY090698 (for cytochrome b) and
AY090699-AY090736 (for ATPase 8).
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We use the DNA sequences AY090696 and AY090697 of wallacii
wallacii and wallacii gigas to illustrate the new confidence inter-
vals for the one-parameter model. First we apply the multiple
sequences alignment procedure of MEGA software to these
sequences, and then count the number of different nucleotides
between the sequences. The number of different nucleotides
between the two sequences is four among 550 which is the length
size. The three intervals for the number of nucleotide substitutions
per site between the two sequences are listed in Table 2.

Table 2 shows that the lower confidence bounds of the score
and adjusted confidence intervals are much larger than those of
the conventional confidence interval. This reveals if we adopt the
conventional confidence interval, then we may think that it is pos-
sible that the number of nucleotide substitutions per site can be
near 0.0001. But from the two other intervals, we have 0.95 confi-
dence that the number of nucleotide substitutions per site is great-
er than 0.002. By the analysis from Sections 2 and 3, when the
proportion of the different nucleotide between two sequences is
low, the score and adjusted confidence intervals are more reliable
than the conventional confidence interval.
6. Conclusion

The performance and construction of confidence intervals for
evolutionary models have not been much investigated in the liter-
ature. In this article, we explore the conventional confidence inter-
val performance and provide new confidence intervals, which are
shown to be better than the conventional confidence interval for
estimating the nucleotide substitution number per site when the
true number of substitutions is small. Both the constant substitu-
tion rate and the variable substitution rate cases are considered.
One of the proposed approaches is to extend the score confidence
interval for the binomial proportion to construct the improved
confidence interval. The other approach is based on an adjusted ap-
proach used for the binomial distribution. The simulation results
show that the proposed confidence intervals are substantially im-
proved over the standard confidence intervals. For the constant
substitution rate case, the two new intervals outperform the con-
ventional interval. For the variable substitution rate case, since
the score interval does not have a closed form, the adjusted inter-
val is more feasible for the real applications.

Since the proposed methodologies as well as the conventional
approach are based on the normal approximation, when the length
of sequences is long, the approaches can perform well. But when
the length is not long enough, which can be viewed as a case with
small sample size case, the methods are not satisfactory. In this cir-
cumstance, a more accurate method is to select an appropriate fac-
tor value, which can deal with the shorter length case with high
precision.

The confidence interval approach can provide more useful
information for estimating the nucleotide substitution number
than the point estimation. The approach proposed in this article
can provide a more efficient and accurate way in the nucleotide
substitution number estimation than the conventional confidence
interval.
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