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a b s t r a c t

Utilizing some results in number theory, we propose an efficient method to speed up the
computer search of large-order maximum-period Multiple Recursive Generators (MRGs).
We conduct the computer search and identify many efficient and portable MRGs of order
up to 25,013, which have the equi-distribution property in up to 25,013 dimensions and
the period lengths up to 10233,361 approximately. In addition, a theoretical test is adopted
to further evaluate and compare these generators. An extensive empirical study shows
that these generators behave well when tested with the stringent Crush battery of the test
package TestU01.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

Maximum-period Multiple Recursive Generators (MRGs) of order k have become popular pseudo-random number
generators (PRNGs) in many areas of applications because of the great properties of equi-distribution over spaces up to
k dimensions, long periods, and excellent empirical performances. As the order k gets larger, these nice properties get more
profound; but, unfortunately, findingmaximum-periodMRGs also getsmore difficult. In this study, we utilize some number
theory results to accelerate the computer search and find a number of large-order maximum-period MRGs accordingly.

An MRG of order k is defined by a k-th order linear recurrence with modulus p that corresponds to a k-th degree
polynomial. This MRG has the maximum period if and only if the corresponding polynomial is a primitive polynomial. For
maximum-period MRGs, we discuss some issues related to the large order in Section 2. In Section 3, we discuss search
algorithms for large-order maximum-period MRGs, in which the key issue is to develop a method that can find a k-th
degree primitive polynomial efficiently. Alanen and Knuth [1] and Knuth [2] gave three necessary and sufficient conditions
for primitive polynomials. Implementation of direct checking of these classical conditions would incur two bottlenecks
in computation. The first bottleneck incurs because no early exit mechanism is provided for non-primitive (or reducible)
polynomials when checking the conditions; thus a tremendous amount of computing time would be wasted. The other
bottleneck resides in the difficulty of factoring a large integer, (pk − 1)/(p − 1), which fortunately can be bypassed by
solving an ‘‘easier’’ problem of testing its primality; see [3]. Bypassing these bottlenecks, Deng [4] developed an efficient
search algorithm (referred to as Algorithm GMP hereafter) with a built-in early exit strategy.

However, if the degree k gets too large, primality testing of (pk − 1)/(p − 1) itself would become a major bottleneck as
well. Therefore, in this paper, we adopt an alternative approach—quickly rule out, for each prime order k considered, the
prime modulus p for which (pk − 1)/(p − 1) has ‘‘small’’ (say less than 1012) prime factors. Some classical number theory
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results, in particular Legendre’s Theorem, are utilized to speed up the computer search. With the successfully found prime
modulus p and the associated order k such that (pk − 1)/(p − 1) is prime, we can then search for large-order MRGs using
Algorithm GMP of [4].

Not all MRGs are efficient in generating random numbers or having good theoretical/empirical performances. Using
Algorithm GMP to search for good maximum-period MRGs, it is necessary to restrict the search within some special classes
ofMRGs. In Section 4, we describe and discuss three classes of efficient large-orderMRGs called DX/DL/DS generators, which
were proposed and/or discussed in [5–7]. Having conducted an extensive computer search using the accelerated method
proposed in this paper, we obtain and list a number of new efficient and portable DX/DL/DSMRGs of several large orders. The
largest order k of the MRGs found so far is k = 25,013 with the period length approximately 10233,361. We further conduct
an extensive empirical study on the listed large-order MRGs and find that all of them pass the stringent tests in the Crush
battery of the TestU01 test suite of [8]. Although most applications at the present time may not need PRNGs with period
lengths as long as these MRGs, these MRGs may come in handy for very-large-scale simulation applications in the future.
In addition, to further compare the new generators with the same equi-distribution dimensions, say, up to the order k, we
adopt a theoretical test to evaluate their lattice structure over k + 1 dimensions.

Throughout this paper, we let p be a prime number and Zp ≡ {0, 1, . . . , p− 1} be the finite field of p elements under the
usual operations of addition and multiplication with modulus p.

2. Large-order multiple recursive generators

An MRG generates pseudo random numbers sequentially with a k-th order linear recurrence:

Xi = (α1Xi−1 + · · · + αkXi−k) mod p, i ≥ k, (1)

where the not-all-zero multipliers α1, . . . , αk and not-all-zero initial seeds X0, . . . , Xk−1 are integers in Zp, and the prime
modulus p is a positive integer. It is well known that the maximum period of the MRG in (1) is pk − 1, which is achieved if
and only if its characteristic polynomial

f (x) = xk − α1xk−1
− · · · − αk (2)

is a primitive polynomial. When k = 1, the MRG reduces to the linear congruential generator (LCG) proposed in [9].

2.1. Advantages of large-order MRGs

Choosing a large order k for a maximum-period MRG has several important advantages:

1. It has an extremely long period length, pk − 1, which goes up exponentially in k. Knuth [2, page 95] commented that
a generator with longer period should be used even though the application only needs a small fraction of the period,
because itwould have better ‘‘accuracy’’ in higher dimensions,which leads to amore effective number of bits of precision.

2. Knuth [2, page 30] also commented that ‘‘all known evidence indicates that the result will be a very satisfactory source of
random numbers’’ for the sequence generated by an MRG (with only a small order then). In the development of large-
orderMRGs, various extensive empirical evaluation studies had already shown that large-orderMRGs tend to have better
empirical performance than small-order MRGs; see, for example, [8,10]. With no doubt, the large-order MRGs found in
this paper also have excellent empirical performances (shown in Section 4).

3. Amaximum-periodMRG is equi-distributed up to k dimensions as stated in [11, Theorem7.43]: every t-tuple (1 ≤ t ≤ k)
of integers between 0 and p − 1 appears exactly the same number of times (i.e., pk−t ) over its entire period pk − 1, with
the exception of the all-zero tuple that appears one time less (i.e., pk−t

− 1).

We remark that it does not take a very large order k to have a long enough period even for current very-large-scale
applications;many publishedMRGs can serve the purpose. Nonetheless, the advantage of achieving higher equi-distribution
dimensions so as to have better PRNGs in terms of the lattice structure makes searching for MRGs of higher order worth
pursuing. The extremely long period is merely a side-product.

2.2. Theoretical test to compare large-order MRGs

Consider a t-tuple (Xi, Xi+1, . . . , Xi+t−1)with the index i running through thewhole period (pk−1) of amaximum-period
MRG in (1). For any t ≤ k, by the equi-distribution property, we can see that a large-order maximum-period MRG is pretty
close to an ‘‘ideal’’ generator that produces all pt t-tuples with equal frequency for any value of t . When t > k, the equi-
distribution property is impossible to achieve because the number of possible t-tuples, pt , is larger than the period length
of the MRG. In fact, like the well-known problem for the LCG [12], these t-dimensional points (vectors) lie on a relatively
small family of equidistant parallel hyperplanes in a high dimensional space; see, for example, [13,2]. Let dt(k) denote the
the maximum distance between two adjacent hyperplanes, taken over all families of parallel hyperplances that cover all
such t-tuples. If dt(k) is large, then the generator is considered ‘‘bad’’ because the ‘‘gap’’ between two adjacent hyperplanes
in t-dimensional space is wide. Clearly, if the dimension t is much larger than k, the maximum gap dt(k) becomes so large
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that no MRG (of fixed order k) can be considered ‘‘good’’. Performance evaluation of a given generator based on dt(k)’s is
often called the spectral test in the literature; see, for example, [2].

The popular generator MT19937, proposed in [14], has a property of 623-dimension equi-distribution. In contrast, the
generators reported later in this paper have much higher dimensions of equi-distribution ranging from 11,003 to 25,013.

Because all maximum-periodMRGs have the ‘‘perfect’’ lattice structure for dimensions up to the order k, the differentials
on the lattice structure among the generators of the same order k can only reside in dimensions t ≥ k + 1. If using dt(k) as
the figure of merit to compare generators, one would want this value to be as small as possible. A well-known lower bound
of dt(k) is

d∗

t (k) =


p−k/t

rt
, t > k,

1
p
, t ≤ k,

where the constant rt depends only on t; see, for example, [2,15,16]. As pointed by a referee, the bound given above ‘‘is one
that can be reached exactly for a general lattice in the real space; in general it cannot be reached for a fixed p and k’’. If the
exact value of d∗

t (k) is known, Fishman and Moore [17] suggested to compare generators with different values of modulus
by normalizing dt(k) with d∗

t (k)/dt(k) so that the value is between 0 and 1, the larger the better. Then a good value for a
generator is one that is not too far away from 1. Unfortunately, the value of rt is known only for t ≤ 8; and so far as we
know, when t is large, there is no general formula for rt .

At the request of a referee, we perform a spectral test to compare among the MRGs found in this paper with the same
order k (and the same modulus p). The reason for only comparing the MRGs with the same order is that, when all other
conditions stay the same, a maximum-period MRG of a smaller order k1 is expected to be inferior to a maximum-period
MRG of a larger order k2 in the lattice test for dimension t whenever k1 < t ≤ k2; and this is simply because the MRG of the
larger order k2 has the equi-distribution property for dimension t , whereas the MRG of the smaller order k1 has not.

To compare performances among generators, one can consider various figures of merit for the spectral test but results
may not always be consistent. In this study, we adopt a simple figure of merit dk+1(k), the maximum gap between adjacent
hyperplanes in the (k + 1)-dimensional space, to compare MRGs of order k. The key for us to be able to compute dk+1(k)
for k as large as 25,013 is that the dk+1(k) value of an MRG with c nonzero terms can be obtained by solving a (c + 1)-
variate quadratic integer program. For example, see [16] for an explicit formulation. We should note that a similar idea for
computing/approximating the spectral values of MRGs with very few nonzero terms was also considered by L’Ecuyer and
his collaborators; see, for example, [13,18].

We remark that because the dimensions of equi-distribution of the reported MRGs are all so large, the actual impact or
practical effect of various dt(k) values on the actual performance of the generatorswould be veryminimal, and our empirical
study as reported in Section 4.3 confirms that.

2.3. Potential problems with large-order MRGs

On the negative side, an MRG with a large order k requires a memory space of size k to store the k-states of the MRG.
However, the memory cost is drastically reduced nowadays and is considered minimal with respect to the current capacity
of computers, even with k as large as 30,000. Also, the one-time cost for the initialization of k states is minimal, especially
for a large-scale simulation study. On the other hand, increasing the order k by 1 will increase the period length by p folds.
Nonetheless, if thismemory space requirement or initialization cost is an issue for the application, one can certainly consider
a smaller k.

To construct a maximum-period MRG of order k, we need a k-th degree primitive polynomial. As mentioned earlier, the
task of searching for k-th degree primitive polynomials gets more andmore difficult as the order k gets larger. Therefore, an
efficient search algorithm plays an important role in finding primitive polynomials successfully when the order k is large.
We describe some search algorithms next.

3. Search algorithms for primitive polynomials

Asmentioned earlier, Alanen andKnuth [1] andKnuth [2] gave three conditions that are necessary and sufficient for a k-th
degree characteristic polynomial f (x) in (2) to be a primitive polynomial. However, when the order k or the prime modulus
p is large, some of the conditions can be very difficult to verify. For example, one condition requires complete factorization
of (pk − 1)/(p − 1); and it is still extremely hard to factor a general integer of 200 (or more) digits even with modern
technologies. As pointed out in [2, page 30], factorization of (pk − 1)/(p − 1) is indeed the limiting factor in calculation to
carry out the test for primitivity modulo p. To avert the difficulty of factoring

R(k, p) ≡ (pk − 1)/(p − 1), (3)

one can search for p with a fixed k such that R(k, p) is a prime number. Clearly, k has to be an odd prime number.



L.-Y. Deng et al. / Journal of Computational and Applied Mathematics 236 (2012) 3228–3237 3231

There are some studies in the field of number theory regarding the primes of the form (ak − 1)/(a − 1), in particular for
small values of a (from 2 up to 12). For example, when a = 2, R(k, 2) is a Mersenne number; when a = 10, it is a decimal
integer with all 1’s, called a repunit number in the literature; see, for example, [19,20].

Finding a large prime p with primality of R(k, p) in (3) as a means to construct random number generators (RNGs) was
first considered in [3] for k ≤ 7 and later in [21] for k ≤ 13. Deng [4] found some prime numbers of the form R(k, p) in (3)
for large k up to 1511 and named the class as the Generalized Mersenne Primes (GMPs). Recently, Deng [22] listed more GMPs
with even larger k’s (up to 10,007).

With the found prime modulus p for GMPs, Deng [4] proposed an efficient search algorithm called Algorithm GMP,
which will exit earlier when f (x) in (2) is not a primitive polynomial. Our experience indicates that the early strategy saves
tremendous amount of time especially when k is large.

With Algorithm GMP, to search for a maximum-period MRG with a large prime order k efficiently, it remains to have a
method that can quickly find a primemodulus p such that (pk −1)/(p−1) is also a prime. Next, we develop such a method.

3.1. Theory about prime factors of (pk − 1)/(p − 1)

As k increases, the likelihood of finding a p such that R(k, p) is a prime by computer search decreases and the computing
time for some probabilistic primality testing procedures increases drastically. According to our evaluation, the running
time for testing one R(k, p) with k = 10,007, 15,013, 20,011, and 25,013 are 701.5, 1768.4, 3194.7, and 5380.5 seconds,
respectively, on some personal computers with 3.2 GHz Intel Xeon processors and 2MB L2 cache. The problemwith most of
the probabilistic primality testing programs is that, regardless whether the number under test is a prime or not, the amount
of computing time is about the same. An early exit strategy to quickly screen out some p’s with a composite number R(k, p)
would help speed up the search. For this, with the help of some classical number theory results, we develop an efficient
screening procedure as described below.

The following theorem gives a characterization of the prime factors of pk − 1 (or (pk − 1)/(p − 1)). It is a special case
of Legendre’s Theorem for the prime factors of the form ak ± bk, where a, b are integers with gcd(a, b) = 1 and k is any
positive integer.

Theorem 1 (Theorem 2.4.3 in [23, page 41]). Let k be a prime. For every prime factor q of (pk − 1)/(p − 1), q = 1 mod k.

From Theorem 1, it is easy to see that any prime factor of (pk−1)/(p−1)must be of the form 2kc+1, because both q and
k are odd primes. Therefore, we can rule out any prime number such that q ≠ 1 mod 2k to be a factor of (pk − 1)/(p − 1).
This simple fact had been utilized in [24] in obtaining the complete factorization of pk −1 for k = 7499 and k = 20,897with
p = 231–1. With the obtained complete factorizations, the authors were able to find several efficient and portable MRGs
of order k = 7499 and 20,897 through computer search. In the current paper, we are looking for prime modulus p such
that (pk − 1)/(p − 1) is a prime. With the help of Theorem 1, we can greatly speed up the computer search by skipping
all primes q ≠ 1 mod 2k. We can further quantify the savings with the help of another powerful theorem in the number
theory described in the following.

Unless stated otherwise, we assume k is an odd prime number. For a given n, denote the set of all primes below n by

Pn ≡ {q|q ≤ n, q is a prime} (4)

and the subset of our particular interest by

Qk,n ≡ {q ∈ Pn|q = 1 mod k}. (5)

Theorem 1 indicates that, for any prime factor q of (pk − 1)/(p − 1), q ∈ Qk,n for some integer n. Therefore, we can search
for prime factors of R(k, p) in the set Qk,n, a set much smaller than Pn. The following theorem gives a general result on the
relative size between Qk,n and Pn. It is a well-known result from a general property of Arithmetic Progressions; see, for
example, [25, pages 61–62]. Let φ(x) be the Euler’s phi function, the number of integers between 1 and x that are relatively
prime to x. For a simple formula to compute φ(x), see [2]. Denote the number of elements in a set S by |S|.

Theorem 2. Let k > 1 be an integer and Pn and Qk,n be defined as in (4) and (5), respectively. We have

lim
n→∞

|Qk,n|

|Pn|
=

1
φ(k)

.

In particular, for a prime k,

lim
n→∞

|Qk,n|

|Pn|
=

1
k − 1

.

The asymptotic behavior of |Pn| ‘‘has been studied extensively bymany of theworld’s greatestmathematicians, beginning
with Legendre in 1798’’ as commented in [2]. In the following, for easy reference, we use the common notation π(n) for |Pn|

and quote some useful results stated in [2, pages 379–383] without giving specific citations.
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Table 1
List of k, c , and p = 231

− c , for which (pk − 1)/(p − 1) is a prime.

k c p = 231
− c log10(pk − 1)

5003 1259,289 2146,224,359 46686.4
6007 9984,705 2137,498,943 56044.7
7001 610,089 2146,873,559 65332.0
8009 5156,745 2142,326,903 74731.1
9001 7236,249 2140,247,399 83983.5

10,007 431,745 2147,051,903 93383.7
11,003 1276,425 2146,207,223 102676.4
12,007 37,532,781 2109,950,867 111956.5
13,001 292,495 2147,191,153 121323.7
14,009 626,301 2146,857,347 130729.2
15,013 8996,265 2138,487,383 140072.9
20,011 26,131,941 2121,351,707 186634.9
25,013 11,538,909 2135,944,739 233361.1

According to [2], π(n) can be approximated fairly well by

L(n) ≡

 n

2

dt
ln t

,

or further by

R(n) ≡ L(n) −
1
2
L(

√
n) −

1
3
L( 3√n),

when n is of reasonable size (say, n ≤ 1018). As an illustration, for n = 1012,

π(n) ≡ |Pn| = 37,607,912,018, R(n) = 37,607,910,542, and L(n) = 37,607,950,280.

From Theorem 1, we know that any prime factor q satisfies q = 1 mod k. Since q is an odd number, it can be easily shown
that q = 1 mod 2k for k > 2. Thus, when k is an odd prime, Qk,n = Q2k,n. By searching factors through Q2k,n instead of Pn,
Theorem 2 tells us that we skip about (k − 2)/(k − 1) of the q’s for which q ≠ 1 mod 2k. For illustration, we find that there
are 1503,440 primes in Q2k,n (of the form 2kc + 1) for k = 25013 with n = 1012. Therefore, we skip a fraction

(37,607,912,018 − 1503,440)/37,607,912,018 = 0.9999600233

of all prime q ≤ n, for which none of them can be a prime factor of R(k, p). This fraction is extremely close to the theoretical
limiting value, (k − 2)/(k − 1) = 0.9999600192, as n goes to infinity.

Skipping, say, 99.996% of the primes enables us to compute the product of all the primes in Q2k,n for a much larger value
of n, which leads to a higher chance of finding prime factors of R(k, p) if it is a composite number. Once a prime factor is
found, the search program can go on to verify the next candidate p. The following screening procedure is developed based
on the aforementioned observations.

3.2. Procedure for finding GMPs

We summarize the steps of the procedure for finding proper (p, k) pairs such that (pk −1)/(p−1) is a prime as follows:

1. For a given prime order k, compute Qn, the product of all prime numbers q ≤ n of the form 2kc + 1 with, say, n = 1012.
2. For a given prime p, check whether there is any common factor between Qn and (pk − 1)/(p − 1):

(i) if the common factor is larger than one (i.e., the early exit condition is satisfied), then we move on to another p;
(ii) otherwise, apply the probabilistic prime test (see [26]) to test the primality of (pk − 1)/(p − 1):

(a) if the primality test fails, move on to another p;
(b) otherwise, record the prime modulus p as the result for the current k, and then go on to repeat the whole

procedure with the next prime order k.

For the actual search, given a range [a, b] for p and an order k, we used the above steps to search for a prime p within a
set where (p − 1)/2 is also a prime, a strategy adopted in [3]. For 32-bit RNGs, we started from the upper bound b = 231–1
and moved downward until the search was successful or the lower limit awas reached. Deng [22] listed some p’s for which
R(k, p) is a GMP for k from 5003 to 10,007 in increments around 1000. In this study, with the skipping strategy described
earlier, wewere able to extend the search and find GMPs for k = 11,003, 12,007, 13,001, 14,009, 15,013, 20,011, and 25,013.
Table 1 lists these new GMPs as well as the GMPs found in [22] for completeness. The number of searches needed for each p
listed in Table 1 appeared fairly random and increasing as k increases in general. In total, several months of CPU time were
spent in searching for the new p’s listed in Table 1.

With the newly found (p, k) pairs of prime modulus p and the associated order k (via finding GMPs), we then employ
Algorithm GMP to search for efficient and portable maximum-period MRGs within DX/DL/DS classes in the next section.
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As argued in [22], for a specific choice of k and p, even if an unlikely false passing wasmade by the probabilistic primality
tests, its effect on the successful search of a primitive polynomial using Algorithm GMP is negligible. In other words, once
R(k, p) is claimed as a probable prime, it is fairly safe to claim that the primitive polynomial found subsequently byAlgorithm
GMP is indeed a primitive polynomial and hence a maximum-period MRG is found.

4. New large-order DX, DL, and DS generators

Generally speaking, an MRG is efficient as long as it can be implemented with a recursive equation with just a few terms.
In this section, we present some efficient and portable maximum-period DX/DL/DS generators of very large orders.

For each generator presented, we also compute its ‘‘max gap’’ (dk+1(k)) between two adjacent parallel hyperplanes
covering generated points (tuples) in (k + 1) dimensions. Among the maximum-period MRGs with the same order k (and
the same p), an MRGwith a smaller value of dk+1(k) is considered a better MRG under this figure of merit. Because the value
of dk+1(k) is usually small (as it should be for a ‘‘good’’ generator), we scale it up by a factor of 105 for better presentation
and easier comparison.

4.1. DX-k-s generators

Deng and Xu [5] and Deng [6] proposed DX generators as a class of portable, efficient, and maximum-period MRGs, in
which the coefficients of the nonzero multipliers are the same. As a special form of (1),
1. when α1 = 1, αk = B, it is a DX-k-1 or an FMRG (Fast MRG) as considered in [27]:

Xi = Xi−1 + BXi−k mod p, i ≥ k; (6)
2. when α1 = B, αk = B, it is a DX-k-2 generator with two nonzero terms of the same multiplier:

Xi = B(Xi−1 + Xi−k) mod p, i ≥ k; (7)
3. when α1 = α⌈k/2⌉ = αk = B, it is a DX-k-3 generator with three nonzero terms:

Xi = B(Xi−1 + Xi−⌈k/2⌉ + Xi−k) mod p, i ≥ k; (8)
4. when α1 = α⌈k/3⌉ = α⌈2k/3⌉ = αk = B, it is a DX-k-4 generator with four nonzero terms:

Xi = B(Xi−1 + Xi−⌈k/3⌉ + Xi−⌈2k/3⌉ + Xi−k) mod p, i ≥ k. (9)

Here the notation ⌈x⌉ is the ceiling function of a number x, returning the smallest integer ≥ x. For the class DX-k-s, s is the
number of terms with coefficient B.

According to [13], a necessary (but not sufficient) condition for a ‘‘good’’ MRG is that the sum of squares of coefficients,k
i=1 α2

i , should be large. Therefore, one would prefer MRGs with large
k

i=1 α2
i . For DX generators, this would ask for s and

B to be as large as possible while retaining the efficiency and portability property.
For portability, Deng [6] discussed some common approaches that impose certain limits on the size of B so that exactly

the same result of the multiplication can be produced with all computing platforms. In particular, Deng [6] proposed to
impose a uniform upper bound for B as B < 230. The ISO C99 standard defines the signed integer types long long and
int64_t. The former can store at least all numbers between (−263) and (263–1) (including the bounds). The latter has a
word size of exactly 64 bits and may not be available on all platforms. Without using 64-bit data types/operations, Deng [6]
proposed a portable implementation of MRGs at the expense of slight generating inefficiency by finding an integer e such
that

B + e × p = C1 × C2 and 0 < C1, C2 < 219. (10)
In this case, multiplying a large B can be replaced by successive multiplications of smaller C1 and C2.

Using Table 1 and the efficient search algorithm GMP, it was straightforward to find DX-k-s generators. In Tables 2a–2d,
we list some DX-k-s generators along with their ‘‘max gap’’ values dk+1(k) for the new (k, p)’s given in Table 1 with three
possible choices: min B (smallest possible value of B for the corresponding DX generator), B < 2d (d = 20 for s = 1, 2 and
d = 19 for s = 3, 4), and B < 230. See [6] for more details for such choices.

For DX generators listed in Tables 2a–2d, we can see that the generators with a small B (under column labeled as ‘‘(a)
min B’’) in general have a larger value of dk+1(k) among the three (but with quite a few exceptions). For example, in Table 2a,
for DX-15013-1 generators, the one under column (a) has the smallest multiplier B = 1002 and the largest value of dk+1(k)
(99.80 × 10−5). On the other hand, the DX generators with the largest B (under column (c)) may not always have the
smallest value of dk+1(k). For example, in Table 2d, among the three generators listed for DX-25013-4, the smallestmultiplier
(B = 35,304) has the best dk+1(k) (1.43 × 10−5) whereas the largest multiplier (B = 1073,733,754) has the worst dk+1(k)
(4.83 × 10−5). Also, if we classify DX-k-s in terms of s, s = 1, 2, 3, 4, it appears that the DX-k-4 generators in Table 2d have
better dk+1(k) values in general, which may be due to the fact that these generators have more non-zero terms than those
generators in Tables 2a–2c.

Anotherway to have a large sumof squares of coefficients of the recurrence equation,
k

i=1 α2
i , is to have asmanynonzero

terms as possible while retaining the efficiency and portability. The following DL/DS generators are such generators.
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Table 2a
List of DX-k-1 with min B, B < 220 , and B < 230 and their ‘‘max gap’’ dk+1(k) ( × 105).

k (a) min B (b) B < 220 (c) B < 230 e C1 C2 (a) (b) (c)

11,003 8740 1046,923 1073,664,067 1 47,310 68,059 11.44 6.52 1.81
12,007 32,149 1040,102 1073,714,070 2 25,537 207,292 3.11 6.97 1.93
13,001 24,041 1034,426 1073,645,435 0 3805 282,167 4.16 2.06 3.19
14,009 14,899 1046,516 1073,730,141 0 19,899 53,959 6.71 2.66 2.74
15,013 1002 1030,728 1073,727,758 4 37,730 255,173 99.80 1.98 3.83
20,011 26,511 1012,339 1073,684,136 0 16,968 63,277 3.77 9.04 7.34
25,013 97,980 1007,372 1073,707,771 0 21,509 49,919 2.75 1.91 2.06

Table 2b
List of DX-k-2 with min B, B < 220 , and B < 230 and their ‘‘max gap’’ dk+1(k) (×105).

k (a) min B (b) B < 220 (c) B < 230 e C1 C2 (a) (b) (c)

11,003 1856 1047,362 1073,730,907 1 10,079 319,470 38.10 2.74 2.47
12,007 7648 1025,393 1073,737,306 1 22,773 139,801 9.24 4.75 2.91
13,001 3203 1032,613 1073,621,150 0 3571 300,650 22.08 4.21 2.34
14,009 60,009 1041,819 1073,738,204 0 30,851 34,804 2.00 2.20 2.13
15,013 51,475 1039,151 1073,723,417 1 6977 460,400 2.28 3.10 1.93
20,011 16,843 863,441 1073,725,998 1 40,015 79,847 4.20 5.57 4.04
25,013 39,434 969,323 1073,692,717 0 20,197 53,161 1.84 2.15 2.56

Table 2c
List of DX-k-3 with min B, B < 219 , and B < 230 and their ‘‘max gap’’ dk+1(k) (×105).

k (a) min B (b) B < 219 (c) B < 230 e C1 C2 (a) (b) (c)

11,003 1941 484,198 1073,725,785 1 51,952 61,979 29.74 11.14 2.77
12,007 5864 510,887 1073,740,063 0 7601 141,263 9.84 4.56 1.68
13,001 20,117 496,756 1073,708,125 0 4375 245,419 2.87 2.99 8.07
14,009 46,683 380,859 1073,736,613 8 45,641 399,829 2.17 1.69 1.69
15,013 7829 510,991 1073,642,398 6 41,953 331,432 7.38 5.64 2.36
20,011 31,616 514,303 1073,727,681 0 5869 182,949 1.83 3.08 1.88
25,013 79,117 492,640 1073,684,077 2 15,971 334,705 2.07 2.80 1.76

Table 2d
List of DX-k-4 with min B, B < 219 , and B < 230 and their ‘‘max gap’’ dk+1(k) (×105).

k (a) min B (b) B < 219 (c) B < 230 e C1 C2 (a) (b) (c)

11,003 16,846 501,164 1073,698,910 0 3511 305,810 2.97 2.58 1.46
12,007 13,992 521,891 1073,718,675 0 16,425 65,371 3.57 1.65 2.74
13,001 95,216 497,838 1073,737,394 4 89,766 107,641 1.83 3.12 1.54
14,009 76,837 467,248 1073,685,011 0 7889 136,099 1.61 1.88 1.99
15,013 18,597 491,619 1073,715,927 1 32,990 97,369 2.69 2.45 2.30
20,011 99,246 481,952 1073,717,310 1 46,819 68,243 1.54 1.89 1.60
25,013 35,304 490,509 1073,733,754 0 8102 132,527 1.43 1.90 4.83

4.2. DL/DS generators

Li [28] and Deng et al. [7] considered a class of generators called the DL-k generator, with αi = B for i = 1, 2, . . . , k, as

Xi = B(Xi−1 + Xi−2 + · · · + Xi−k) mod p, i ≥ k. (11)

Such DL generators can be implemented efficiently by

Xi = Xi−1 + B(Xi−1 − Xi−(k+1)) mod p, i ≥ k + 1. (12)

Deng et al. [7] also considered another class of generators with many nonzero coefficients, called the DS generator, in
which αi = B for all i ∈ {1, 2, . . . , k} but i ≠ d and αd = 0. Specifically, the DS generator has exactly one zero coefficient at
the d-th term:

Xi = B
k

j=1, j≠d

Xi−j mod p, (13)

which can be efficiently implemented by

Xi = Xi−1 + B(Xi−1 − Xi−d + Xi−d−1 − Xi−k−1) mod p, i ≥ k + 1. (14)
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Table 3
List of DL-k with min B, B < 220 , and B < 230 and their ‘‘max gap’’ dk+1(k) (×105).

k (a) min B (b) B < 220 (c) B < 230 e C1 C2 (a) (b) (c)

11,003 974 1047,354 1073,740,420 0 12,340 87,013 0.98 0.37 1.19
12,007 71,809 1019,967 1073,701,152 1 33,091 96,209 0.30 0.24 0.30
13,001 45,877 1046,701 1073,737,383 6 87,751 159,051 0.21 0.29 0.23
14,009 3033 1045,015 1073,731,310 6 32,768 425,869 0.28 0.19 0.35
15,013 27,470 1022,968 1073,682,207 2 14,639 365,507 0.28 0.20 0.20
20,011 9856 957,798 1073,740,275 1 14,978 213,319 0.22 0.19 0.26
25,013 77,849 1030,614 1073,632,412 0 3524 304,663 0.36 0.21 0.34

Table 4
List of DS-k with min B, B < 219 , and B < 230 and their ‘‘max gap’’ dk+1(k) (×105).

k (a) min B (b) B < 219 (c) B < 230 e C1 C2 (a) (b) (c)

11,003 2,970 499,001 1073,738,082 0 3,642 294,821 0.32 0.24 0.25
12,007 30,905 449,500 1073,718,847 0 4,483 239,509 0.20 0.43 0.27
13,001 54,823 523,735 1073,719,552 2 13,873 386,946 0.21 0.20 0.24
14,009 17,750 511,417 1073,726,903 0 2221 483,443 0.22 0.29 0.36
15,013 12,820 489,924 1073,729,060 0 7039 152,540 0.20 0.20 0.45
20,011 8,182 523,178 1073,718,965 0 26,417 40,645 0.19 0.30 0.64
25,013 48,418 485,316 1073,732,301 10 142,831 157,061 0.25 0.29 0.17

The parameter d of the zero-coefficient index can be chosen arbitrarily. Following [7], we refer to the case of d = ⌈k/2⌉ as
the DS-k generators.

In Tables 3 and 4, we list some DL-k and DS-k generators, respectively, for the new (k, p)’s given in Table 1 with min B,
B < 220 or 219, and B < 230 along with their ‘‘max gap’’ values dk+1(k)(×105). We consider B < 220 for a double precision
implementation of DL-k because its efficient recursive implementation (12) has a similar structure as that of the DX-k-2
generator (7). Similarly, B < 219 is considered for the DS generator because the structure of the implementation (14) is
similar to that of the DX-k-4 generator (9).

For DL/DS generators listed in Tables 3 and 4, it is noted that they all have better dk+1(k) values than those for the
DX generators listed Tables 2a–2d. Except for the smallest order (k = 11,003), all the listed DL/DS-k generators have
dk+1(k) < 10−5 whereas all the DX generators have dk+1(k) > 10−5. This effect confirms nicely the advantageous design of
having so many nonzero terms. Furthermore, it seems that the size of the multiplier B has little or no effect on the size of
the dk+1(k) value. Comparing the DL and DS generators, they have similar performances in terms of the max gap dk+1(k).

In summary, the choice of the classes generators (DX, DL or DS) appears to have a major effect on the size of dk+1(k).
On average, DS generators tend to have the best performance among the three classes (but just slightly better than DL
generators). The worst performing group is DX generators.

4.3. Empirical evaluations

We evaluate these generators with the stringent empirical tests in the Crush battery of the TestU01 test suite. The Crush
battery has 144 tests and its running time is about 1.5 h to test each generator. See [8] for more details. It appears that the
conclusions of the empirical evaluations for various versions of TestU01 (v1.0, v1.1, or v1.2) do not vary much. In this paper,
we report the results from TestU01 v1.1.

There are 21 (number of k’s × number of B’s) generators for each subclass of the DX-k-s (for s = 1, 2, 3, 4) in
Tables 2a–2d, the DL generators in Table 3, and the DS generators in Table 4. In total, there are 126 generators listed in
Tables 3, 4 and 2a–2d. For each generator, we apply the Crush battery of tests to five sets of random numbers generated
with five different starting seed vectors. Each seed vector consists of k initial seeds generated by an LCG: Xi = BXi−1 mod p,
where the multiplier B and modulus p are the same as that of the MRG under testing. The five seeds used in this study for
the LCG are 1, 12, 123, 1234, and 12,345. In total, the required computing time for 630 (= 126 × 5) Crush testings (each
takes about 1.5 h) is almost 40 days. We obtain 15,120 (= 144 × 21 × 5) p-values for each class of the generators listed.
The size of a p-value represents the probability of observing a test statistic more extreme than the one observed when the
null hypothesis is true. The smaller the p-value is, the more significant the test result gets, which usually indicates that the
generator fails the particular test more severely. On the other hand, when the p-value is too close to 1, it is considered as
‘‘too good to be truly random’’. See, for example, [8] for a more detailed discussion. The numbers of tests with p-values less
than α or larger than 1−α for α = 10−3, 10−4, 10−5, and 10−6 are tabulated in Table 5 for the DX generators and in Table 6
for the DL and DS generators under testing.

As we can see from Tables 5 and 6, none of these tests produces a p-value smaller than 10−6 or larger than 1–10−5. As
mentioned earlier, a small p-value means the test statistic is too far from its theoretical value and a p-value too close to 1
means the test statistic is too close to its theoretical value to be considered ‘‘truly random’’. In Table 5 (for DX generators),
the proportions of tests producing p-values below 10−3, 10−4, and 10−5 are 0.00121, 0.00020, and 0.00002, respectively,
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Table 5
Results of Crush tests on DX-k-swith s = 1, 2, 3, 4 and five starting seeds.

RNG p-value < 10−3 < 10−4 < 10−5 < 10−6 > 1–10−3 > 1–10−4 > 1–10−5

DX-k-s (15,120 p-values each)
DX-k-1 Count 24 3 0 0 18 3 0
Table 2a Proportion 0.00159 0.00020 0 0 0.00119 0.00020 0
DX-k-2 Count 10 1 0 0 9 2 0
Table 2b Proportion 0.00066 0.00007 0 0 0.00060 0.00013 0
DX-k-3 Count 17 3 0 0 12 2 0
Table 2c Proportion 0.00112 0.00020 0 0 0.00079 0.00013 0
DX-k-4 Count 22 5 1 0 14 1 0
Table 2d Proportion 0.00146 0.00033 0.00006 0 0.00093 0.00007 0

DX-k (60,480 (= 15,120 × 4) p-values in total)
DX-k Count 73 12 1 0 53 8 0
Tables 2a–2d Proportion 0.00121 0.00020 0.00002 0 0.00088 0.00013 0

Table 6
Results of Crush tests on DL and DS generators with five starting seeds.

RNG p-value < 10−3 < 10−4 < 10−5 < 10−6 > 1–10−3 > 1–10−4 > 1–10−5

DS-k (15,120 p-values each)
DL-k Count 15 2 0 0 16 0 0
Table 3 Proportion 0.00099 0.00013 0 0 0.00106 0 0

DL-k (15,120 p-values each)
DS-k Count 17 1 0 0 15 0 0
Table 4 Proportion 0.00112 0.00007 0 0 0.00099 0 0

DL-k and DS-k (30,240 (= 15,120 × 2) p-values in total)
DL+DS Count 32 3 0 0 31 0 0
Tables 3 and 4 Proportion 0.00106 0.00010 0 0 0.00103 0 0

which are in the same order as their corresponding nominal values (i.e., 10−3, 10−4, and 10−5 by considering p-values are
uniformly distributed in (0,1)). Table 6 shows even better test results for the DL and DS generators: the proportions of tests
producing p-values below 10−3, 10−4, and 10−5 are 0.00106, 0.00010, and 0.00000, respectively. In addition, none of these
90,720 tests produces a p-value very close to 0 or 1. Thus, we can conclude that each of the generators listed in Tables 3, 4
and 2a–2d has passed the Crush battery of TestU01.

5. Conclusion

In this study, we utilized some classical number theory results to develop an efficient method for the computer search
of very-large-order MRGs. Having conducted an extensive computer search, we were able to identify many special-class
MRGs that are portable and efficient. All of the generators presented in this paper have the equi-distribution property in
very high dimensions, extremely long periods, and superior empirical performances. The largest order of the MRGs found
in this study is 25,013, which has a period length approximately 10233,361, much larger than the most practical applications
would need at the present time. The property of equi-distribution in dimensions up to 25,013 can be an appealing feature of
the proposed MRGs especially for very-large-scale simulation studies now and in the future. If the size of memory to store
k = 25,013 current state variates is a concern, one can certainly consider a smaller k.
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