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In this study, we focus on improving parameter estimation in Phase I study to construct more accurate Phase I
control limits for monitoring multivariate quality characteristics. For a multivariate normal distribution with
unknown mean vector, the usual mean estimator is known to be inadmissible under the squared error loss
function when the dimension of the variables is greater than 2. Shrinkage estimators, such as the James-Stein
estimators, are shown to have better performance than the conventional estimators in the literature. We
utilize the James-Stein estimators to improve the Phase I parameter estimation. Multivariate control limits
for the Phase Il monitoring based on the improved estimators are proposed in this study. The resulting control
charts, JS-type charts, are shown to have substantial performance improvement over the existing ones.
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1. Introduction

Multivariate control charts are useful tools in detecting shifts in
a manufacturing process when the quality characteristics of inter-
est are multivariate. Early research goes back to the T2 control chart
(Hotelling, 1947), which detects mean vector shifts in a multivari-
ate process based only on the most recent observation, resulting in
insensitive detection of small mean vector shifts.

There are many other multivariate control charts proposed in
the literature. Crosier (1988) proposed multivariate CUSUM control
charts by either reducing each multivariate observation to a scalar
or forming a CUSUM vector from the observations. Pignatiello and
Runger (1990) proposed a CUSUM control chart, MC1, and showed
that it has better performance than several other CUSUM charts. In
addition, the MEWMA control chart established by Lowry, Woodall,
Champ, and Rigdon (1992) uses all data information from the early
to the last observations to construct a chart which has the advantage
of smaller average run length for detecting small shifts in the process
mean vector. Reynolds and Cho (2006) and Reynolds and Stoumbos
(2008) proposed combining different multivariate control charts for
monitoring process mean vector. For more studies on multivariate
control charts, refer to Chan, Lai, Xie, and Goh (2003), Huwang, Yeh,
and Wu (2007), Wang (2012) and Woodall and Montgomery (2014).
The use of control charts generally involves two phases, Phase I and
Phase IL In the Phase I study, a set of historical data is used to esti-
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mate the parameters of the process and establish control limits for
the Phase Il monitoring. In the Phase Il monitoring, the data are se-
quentially collected over time to assess whether the parameters of
the process have changed from the estimated values in the Phase I
study. Usually before the Phase Il monitoring, one must estimate the
in-control process parameters and determine the control limits in the
Phase I study. As a result, the accuracy of the Phase I estimation is a
crucial step for the success of the Phase II study.

For monitoring a univariate quality characteristic assumed to fol-
low a normal distribution, there are only two parameters, the mean
and variance, that need to be estimated. In this case, the sample mean
and sample variance are optimal estimators under the squared er-
ror loss function. On the contrary, when the number of parameters
needed to be estimated is greater than two such as in the case of a
multivariate normal process, it is well known that the conventional
estimators are not optimal under squared error loss. For example,
the sample mean vector is not admissible for estimating the mul-
tivariate normal mean vector under squared error loss when the
dimension is greater than two (Berger, 1985). Due to the inadmis-
sibility property of the sample mean vector, the parameter estima-
tion in the Phase I study for monitoring multivariate process can
be improved.

It is well known that the shrinkage estimators have smaller
mean squared errors than the conventional estimators (Lehmann
& Casella, 1998; Stein, 1956). Thus, in this study, we propose using
shrinkage estimators to improve the Phase [ estimation. Since one of
the well-known shrinkage estimators is the James-Stein estimator,
we propose multivariate control charts based on the James-Stein
estimator in the Phase I study and show that the resulting charts, as
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compared with the conventional charts, have substantial improve-
ment in performance. To carry out this, several well-known charts
with the Phase [ estimation based on the conventional estimators and
the James-Stein estimators are studied in the Phase Il monitoring, and
their performance is compared in terms of average run length (ARL).
The rest of the paper is organized as follows. The shrinkage esti-
mation approach is introduced in Section 2. The new control charts
based on the James-Stein estimator to estimate the mean vectorin the
Phase I study when the covariance matrix is known or unknown are
proposed in Section 3. Section 4 compares the conventional charts
and the new proposed charts in terms of the ARL performance. An
asymptotic result for control limit comparison is given in Section 5.
A real example from the chemical industry is illustrated in Section 6.
Concluding remarks and discussions are given in Section 7.

2. Shrinkage estimation

Suppose that a random sample X, ..., Xy follows a multivari-
ate normal distribution N(u, ¥) where u is a p-dimensional vec-
tor and X is a p x p positive definite matrix. First, we assume that
¥ is known. The conventional estimator for p is the sample mean
X =Y, X;/n. Stein (1956) has proved that for estimating x, un-
der squared error loss, X is inadmissible for p > 3. Namely, there
exists an estimator §(Xj, ..., X;) such that the mean squared error
(MSE) E[ (%1, ... Xa) = ) T3, ... Xa) — )], o (X1, X)
is smaller than or equal to the MSE, E[(X — ) 2~ 1(X — w)], of X for
all u and the strict inequality holds for some ; when p > 3. An im-
proved estimator, called the James-Stein estimator, is proposed in
James and Stein (1961) with a smaller mean squared error than X.
Since then, many studies for developing shrinkage estimators have
been conducted (Casella, 1980; Draper & Van Nostrand, 1979; Efron
& Morris, 1972; Strawderman & Cohen, 1971; Wang, 1999, 2000).

In our study, we use the James-Stein estimator to construct better
control charts. The standard form of the James-Stein estimator is
given by

. -2
x{f=<1— P2
nX-vyz-1X-v)

>~(X—v)+v, (1)

where v is a fixed vector to which we intend to shrink X. By Lehmann
and Casella (1998), v can be selected to be any p-dimensional vector.
An improved James-Stein estimator has the form

)‘(JS:(1— P2
nX—-vyX-1X-v)

which is shown to have smaller MSE than the standard James-Stein
estimator (1). Here the notation x* is defined to be

X+ — x if x>0,
| 0 otherwise.

>+-()-(—v)+v, (2)

Note that in this study, we adopt the form (2) as the James-Stein
estimator for constructing improved control charts.

It is worth noting that a confidence set based on the shrinkage
estimator is preferable to that based on the conventional estimator,
resulting in the potential use of the James-Stein estimator for con-
structing better charts. Usually, a 1 — o confidence set for  based on
the sample mean vector X is

C={u:X-—puw='(X-pn)<c/n,

where c is the 1 — « cutoff point of a chi-square distribution with
p degrees of freedom. The exact coverage probability Pr(C) of the
confidence set C equals 1 — «. However, the confidence set based on
the James-Stein estimator

B ={p: X —puys &5 — ) < c/n} 3)

has been shown to have a higher coverage probability than 1 -«
analytically and numerically. That is,

Pr(C%) > Pr(C), (4)

and the strict inequality in (4) holds for some & when p > 3 (Brown,
1966; DasGupta, Ghosh, & Zen, 1995; Hwang & Casella, 1982; Joshi,
1967).

Since the sets CJS and C have the same volume, property (4) shows
that the set (IS can include a larger proportion of the population than
the set C with the same capacity, which leads to better performance
of the set (I8, Using property (4), in Section 3 we will propose several
control charts in the Phase II study for monitoring the mean vector
with the James-Stein estimator (2) used in the Phase I estimation.

Note that although v in (2) can be selected to be any vector, the
performance of the James-Stein estimator depends on v. If we do not
have any preference of selecting v, we can select the value of v near
the sample mean vector or being the zero vector.

3. JS-type control charts
3.1. Known covariance case

In this section, we propose charts for monitoring ©« by modify-
ing several well-known conventional charts by replacing the sample
mean with the James-Stein estimator. For simplicity, we only con-
sider the case of subgroup size 1 (i.e., individual observation) in our
study. However, the results can be easily extended to the case where
the subgroup size is greater than 1. In the following, the notation X
denotes the sample mean vector of the in-control observations in the
Phase I study and X; ~ N(u, ), with known X, denotes the observa-
tion of subgroup i,i=1, 2, ..., in the Phase Il monitoring. Since the
proposed charts are obtained by replacing the sample mean with the
James-Stein estimator in the original charts, we refer to these charts
as the JS-type control charts.

1. The JS-TZ chart.
The first proposed control chart is to modify the Hotelling-T2 chart
(Hotelling, 1947). When the covariance matrix ¥ is known, the
monitoring statistic for the sample i is

T = (X — XSy £ (X, — X5). (5)
The chart gives an out-of-control signal if
TJS > (1, (6)

1

where c; is the constant to achieve a desired in-control average
run length (ARLp). The conventional Hotelling-T2 chart replaces
XIS with X in (5) (Tracy, Young, & Mason, 1992).
2. The JS-MC1 chart.

Pignatiello and Runger (1990) proposed the MC1 control chart and
showed that it can improve Crosier’s (1988) multivariate CUSUM
control charts. The modified monitoring statistic for the MC1 chart
is

MC1P = max{||Gi|| — kn;, 0},

where k > 0,
i
G= ) -Xb) (7)
I=i—n;j+1

L] if MC1?, <o,
T mo 1 if MC1E, >0,

Gl =/GEG

and
MC1¥ = 0.
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The JS-MC1 chart gives an out-of-control signal when
MC1P > ¢, (8)

where ¢, is the constant to achieve a specified ARLy. The conven-
tional MC1 chart replaces XS in (7) with X. Pignatiello and Runger
(1990) chose the reference parameter k to be half of the distance
between ©* and 4g, where jq is the in-control mean vector value
and p* represents a specified unacceptable out-of-control mean
vector value.
3. The JS-MEWMA chart.

The MEWMA control chart was first developed by Lowry et al.
(1992). The modified JS-type chart statistic is

EP =7%;'7,
where
Zi=AX - X5+ (1 - MZiq. 9)
and
Y, = L[l — (1 =24z,
t2-2)

Here Zy = 0 (the zero vector) and A is a constant, 0 < A < 1. The
parameter A determines the rate at which ‘older’ data enter into
the calculation of the statistic. Thus, a large value of A gives more
weight to recent data and less weight to older data. When choosing
the value of A, it is recommended that small values of A, such as
0.2, are used to detect small shifts, and larger values for larger
shifts. The MEWMA chart gives an out-of-control signal if

EP > s, (10)

where c3 is a specified constant. The constant c3 is chosen to
achieve a desired ARLy. The conventional MEWMA chart replaces
XIS with X in (9).
4. The JS-SZ & JS-MZ combined chart.

Reynolds and Cho (2006) and Reynolds and Stoumbos (2008) pro-
posed combining different multivariate control charts for process
monitoring. One of them is the combination of SZ and MZ control
charts, where the SZ denotes the Hotelling-T2 chart and the MZ
for the MEWMA chart. Based on the SZ & MZ combined chart, we
proposed a JS-SZ & |S-MZ combined chart, which signals if

T > ¢4 (11)
for the JS-SZ chart or
ZxZ > ¢cs (12)

for the JS-MZ chart, where TIJS is defined in (5), Z; is defined in (9),
and X, = AX/(2 — A). Here the constants c4 and c5 are chosen to
achieve a desired ARLy. The conventional JS-SZ & ]S-MZ combined
chart replaces XJ5 with X in TIJS and Z;.

3.2. Unknown covariance matrix

In Section 3.1, we considered the case with known covariance
matrix. However, in applications, it is likely that the covariance matrix
is unknown. For the unknown covariance matrix case, we propose
using a modified James-Stein estimator of the form

oIS p-2

X = [l nX —vyS-1X —v)
where Sis the sample covariance matrix of the in-control observations
in the Phase I study. We have included the details of the JS-type charts
in the case of a known covariance matrix. By a similar argument, we
propose control charts for the case of unknown covariance matrix
with the James-Stein estimator (2) and X in the four JS-type control
charts in Section 3 replaced by the modified James-Stein estimator
(13) and the sample covariance S, respectively.

+ -
] X =v)+v, (13)

4. Simulation study

In this section, we conduct a simulation study to compare the JS-
type control charts with the conventional control charts in terms of
their ARLs. In applications, it is usually the case that the covariance
matrix is unknown. Thus, here we mainly consider the case of un-
known covariance matrix. In the simulations, we consider the case
that the true mean of the process is not equal to the zero vector 0 and
the James-Stein estimator shrinks toward the point 0. Here we do not
assume that the true mean is the zero vector because in applications,
the point that we shrink toward is usually not the true mean.

To consider a more general case, we assume that
= o= (h,—h h,—h,... (=1)P*1hY, where h is a constant, when
the process isin control and i = * when the process is under an out-
of-control condition. In general, when we select the point vof(13)ina
p-dimensional space, it is possible that the values of this point in some
dimensions are greater than (or less than) the true parameter values
in the corresponding dimensions. Since in the simulation study, the
James-Stein estimator shrinks toward the zero vector, we select the
type of 1o such that its values in some dimensions are greater than
0 and its values in other dimensions are less than zero. We also tried
other in control parameter values, suchas ujy = (h, h, h. h, ..., h) . The
simulation shows that it has a similar performance as that of . In
this study, h is set to 0.03 and v in (13) is selected to be the zero
vector 0. That is, the James-Stein estimator (13) shrinks toward the
point 0.

From the simulation study, we found that the ]JS-type control
charts usually have significant improvement when the true mean
is in a known region which should not be too wide, and v in the
James-Stein estimator is selected to be a point in this region. If we
do not have this knowledge, and just let the James-Stein estimator
shrink to a randomly selected point, the JS-type charts may not have
significant improvement.

To investigate the performance of the JS-type charts for different
situations, we consider three cases with different covariance matri-
ces: (i) the covariance matrix arising from an autoregressive model,
(ii) the covariance matrix from an equi-correlation framework, and
(iii) a specific nonsparse covariance matrix. For the first case, we con-
sider the covariance matrix from an autoregressive model AR(1). Let
Y: be a time series with the model

Yi=1+0Y 1 +e€,

where ¢ is a constant and ¢; is assumed to follow a standard normal
distribution N(0, 1). The covariance matrix of Yy, t =1, ..., p, has the
form

1/(1 - ¢3?) if i=j
o = D e e 14
! {qb“-"/(l —¢?) if j#i, (14)
wherei,j=1,..., p. In the second circumstance, we consider the co-
variance matrix of the form
1 if i=j
""—{e if i (15)

where e is a constant between 0 and 1and i,j =1, ..., p. For the third
case, since in the simulation study the dimension of the variables does
not exceed 15, we consider a covariance matrix of the form
if i=j

if £ (16)

1

o= { (15 - i)/(15/p)
wherei,j=1,..., p.

The ARL performance is presented for various values of d = ||u* —
Woll. To have a fair comparison, we set the control limits of each
control chart with the same ARLy when the process is in control, and
then the ARLs for different out-of-control scenarios are estimated. A
chart with a larger ARL in an out-of-control condition is not preferable
because it needs more data to signal.
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Table 1

The ARLs of the T? and JS-T? charts for the covariance matrix from
the autoregression matrix when m=25¢=03,u;=(=d//p.....d//D),
M2 =(d/p—=2,....d//p—2,0,0), u3 = /P, ...,d/P) and pus = (—d//p.d/ /P,
=d/yp..... (=1)Pd/ D).

d W'—po p=5 p=10 p=15
T2 Js-12 T2 Js-12 T2 Js-T2
0 0 199.81° 20021 20035 201.73 20035  200.07
(0.60° (061) (063) (063) (067) (0.67)
10 13727 13143 16489 16232 181.73 179.84
(0.48)  (0.46)  (056)  (0.56)  (0.64)  (0.63)
w2 130.86 12368 16395 16154 180.07 177.88
(0.47) (045  (056) (055  (0.63)  (0.63)
30 s 18.37 16.24 50.47 47.08 91.42 87.29
(0.10)  (0.08) (025  (024) (0.43)  (0.41)
m 2.16 1.86 8.04 6.82 24.96 22.06
(0.01)  (001) (005  (0.04) (0.18)  (0.16)
e 24.40 23.90 57.48 5627 13554  133.24
3 ARL.

b Standard error.

Table 2

The ARLs of the MC1 and JS-MC1 charts for the covariance matrix from
the autoregression matrix when m=25k=0.5,¢=0.3, 1 =d/P,.... d/Jp),
M2 =(d/yp-2,....d/y/p-2,0,0), u3 = (d//P, ..., d//P) and s = (—d//p, d//P.
~d/P..... (~1Pd/P).

d W—po p=5 p=10 p=15
MC1 Js-MC1  MC1 JS-MC1  MC1 Js-MC1
0 0 200.69° 20093  199.66  200.88  199.60 199.17
058" (0.57) (0.52) (0.58) 032)  (0.59)
10 3479 2299 66.99 3216 11632 5044
0.12)  (0.05) 0.13) (0.06) (0.14)  (0.07)
o 2998  20.07 65.52 31.44 66.11  27.64
0.09)  (0.04) 0.13) (0.05) 0.05)  (0.02)
30 w3 6.87 521 18.83 8.90 4110  16.83
(0.005) (0.004)  (0.01) (0.006)  (0.03)  (0.01)
a 3.25 2.56 9.42 470 21.74 9.01
0.001) (0.001)  (0.005)  (0.002)  (0.01)  (0.01)
S\ 13.55  10.19 4571 2174 13230 5343
2 ARL.

b Standard error.

Comparisons of the four charts with their |S-type counterparts are
presented in Tables 1-12, which tabulate the ARLs for different values
of w* when the in-control process mean vector is estimated from
m = 25 observations in the Phase I study. Let ¢;s denote the constants
used in original control charts corresponding to the constant ¢;s used
in the JS-type charts. The last row of each table gives the values of
¢; and ¢; used for the control limits such that all charts have the
ARL, approximately equal to 200. The replication size used in this
simulation study is 200,000. The corresponding standard errors for
each ARL calculation are given in parentheses.

In the out-of-control scenarios, we consider three different mean
shift patterns. The three forms of u* — o are (d//p,...,d/p)
@\p—2...d//p—2,0,0) and (~d/\/B.d/yp.~d/\P.....
(=1)d//p). All of these forms satisfy ||u* — wo|| = d. Tables 1-4
provide the performance of the conventional charts and the JS-type
charts for the covariance matrix (14) from the autoregressive model
with ¢ =0.3. Tables 5-8 present the results for the covariance
matrix from the equi-correlation framework. Tables 9-12 display the
results for the covariance matrix of the form (16). In the simulation
study, the constant k for the MC1 charts in the tables was chosen to
be 0.5 as it is commonly selected and the smoothing constant A for
the MEWMA charts was selected to be 0.2.

For comparing the SZ & MZ and ]S-SZ & JS-MZ combined charts,
it is first necessary to compute the values of (cj,c5) and (cs.c5)

Table 3
The ARLs of the MEWMA and JS-MEWMA charts for the covariance matrix
from the autoregression model when m=25,A=02,¢=03 pu;=(d/p....

Jd/JP),  Ma=(d/Jp—2.....d//p—2,0,0),  usz=(d/yp.....d/yP)  and
Ma = (=d/P.d/D.~d/\/P..... (=1)d/ D).
d W' —to p=5 p=10 p=15
EWMA  JS-EWMA EWMA  JS-EWMA EWMA  JS-EWMA
0 (i} 200.52* 20055 20075 20126 20033  200.62
0.6y 0.6) (0.61)  (0.62) (0.65)  (0.65)
10 5432 35.99 94.95 7296 12920  113.89
(024)  (0.13) (038)  (0.29) 0.50)  (0.50)
w2 46.18 29.77 92.24 7108 12872  113.10
0.2) 0.11) (037)  (0.29) (0.50)  (0.46)
30 s 3.31 2.80 6.55 5.30 13.62 10.64
(0.006)  (0.005)  (0.02)  (0.01) 0.07)  (0.04)
M 1.03 1.02 1.51 1.38 2.55 2.31
(10-4)  (104)  (0.002)  (0.002)  (0.004)  (0.004)
A\es 26.54 23.55 63.45 56.00  149.07  134.68
3 ARL.

b Standard error.

Table 4

The ARLs of the SZ & MZ and JS-SZ & JS-MZ combined charts for the covari-
ance matrix from the autoregression matrix when m =25, ¢ = 0.3, A = 0.026, i1 =
d/p. ..., d/yp), H2=@d/\Jp-2,..., d/y/p—2,0,0), psz=@d/Pp..... d/p) and
ta = (=d//p.d/P. ~d/\/P. ... (=1)d/ /D).

d W'—po p=5 p=10 p=15
SZ&MZ JS-type SZ&MZ JS-type SZ&MZ JS-type
0 0 201.66° 201.21 20043 201.14  200.15  200.89
(058" (0.59) (059) (0.61)  (0.61)  (0.64)
10 4724 2848 7439  42.01 98.52 64.34
(0.13)  (0.04) (024 (007) (035  (0.19)
2 4138 25.88 72.18 4125 96.73 62.63
0.1) 0.3) (023) (007) (034  (0.18)
30 s 9.05 6.88 14.91 10.83 19.66 15.15
(0.01)  (0.01) (0.02) (0.01) (0.02)  (0.02)
U 2.84 227 5.87 4.42 8.80 6.94
(0.01)  (001) (001) (001) (0.01)  (0.01)
A 29.20 2860  68.90 67.50 168.00  165.50
c\Cs 37.00 2220 9560 5530  220.00 145.00
2 ARL.

b Standard error.

Table 5

The ARLs of the T? and JS-T? charts for the covariance matrix from the
equi-correlation  framework when m=25,e=04, wu;=(@d/p..... d/Jp),
M2=W/yp=-2.....d/y/p—2.0,0). pu3=Wd/yp.....d/yP) and ps=(-d/\P.

d/\/p.~d/P..... (=1)Pd//P).
d W —po p=5 p=10 p=15
T2 Js-T2 T2 J5-T2 T2 Js-T2
0 (i} 200.02* 199.96  200.14 20029  200.61  200.39
(061 (061) (063 (063) (067)  (0.67)
1.0 153.61 14855 184.89 18326 19457  193.80
(052)  (050)  (0.60)  (0.60)  (0.66)  (0.66)
1 11355 106.76  167.23 16410 18589 18453
(043)  (0.40)  (0.57) (0.56)  (0.64)  (0.64)
30 3 33.62 30.14  107.20  102.07 15437 15124
(017)  (0.14)  (043) (041) (058)  (0.57)
m 1.90 1.63 7.41 623 2414 2147
(0.01)  (0.01) (005  (004) (0.17)  (0.16)
A 2438 2387 5748 5626 13544 133.16
2 ARL.

b Standard error.
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Table 6

The ARLs of the MC1 and JS-MC1 charts for the covariance matrix from the
equi-correlation framework when m=25k=0.5,e=0.4, i =d/Jp..... d//p),
[2 = @/\P—2.....d/\/p—2.0.0). jt3 = (@//p.....d//P) and pta = (~d//P.d//P.
—d/p. ..., (—=1)Pd//p).

d W—po p=5 p=10 p=15

MC1 JS-MC1  MC1 Js-MC1  MC1 JS-MC1

0 0 20049° 20073  200.16  201.55  199.52  200.62
(058"  (0.56) (0.52) (0.59) (032)  (0.61)

10 52.75 3450  112.07 6521  162.33  98.98
(0.20) (0.09) 0.3) (0.18) (024) (029

2 2222 15.96 69.50 3250 13236 5831

(0.05) (0.02) (0.14) (0.06) (0.17)  (0.10)

30 s 8.61 6.52 30.88 13.88 7725 2958
0.002)  (0.001)  (0.03) (0.01) (0.07)  (0.03)

m 3.17 2.49 9.27 445 21.60 8.54
(0.001)  (0.001)  (0.005)  (0.002)  (0.01)  (0.01)

A\e 13.54 10.19 45.80 2114 13238  51.00

3 ARL.

b Standard error.

Table 7

The ARLs of the MEWMA and ]JS-MEWMA charts for covariance matrix from
the equi-correlation framework when m=25A=0.2,e=04, ;= d/Jp.....
d/Jp) ma=@/Jp=2..... d/\/p—2.0,0), w3 = (d/yp,....d/yp) and
pa = (=d/yp.d/ /P, —d/ /P, ... (=1)Pd/P).

Table 9

The ARLs of the T2 and JS-T? charts for the covariance matrix (16) when m = 25,
ft1 = (@/Po...d/ P, 2 = (/P —2.....d/\/p—2.0.0), 13 = (d//P.....d//P)
and pt4 = (~d//p. d//P. ~d/ . ... (~1)d/ /).

d w —po p=5 p=10 p=15
T2 JS-T2 T2 JS-T2 T2 JS-T2
0 0 200.38* 200.63 200.51 200.64 200.90 200.56
0.61)°  (0.61) 0.63) (0.63) (0.67) (0.67)
1.0 1 152.36 147.43 179.31 176.69 187.20 185.61
(0.51) (0500 (0.59) (0.59)  (0.65)  (0.64)
U2 114.44 107.31 169.68 166.79 185.84 184.58
(043)  (040) (057) (0.57)  (0.64)  (0.64)
3.0 U3 32.88 29.58 80.82 76.04 112.98 109.05
0.16) 0.14) (0.36) (0.34) (0.48) (0.48)
a4 2.19 1.88 12.99 11.07 41.92 37.95
001)  (0.01) (0.08) (0.07) (0.26)  (0.24)
e 24.38 23.87 57.48 56.25 135.54 133.24
4 ARL.

b Standard error.

Table 10

The ARLs of the MC1 and JS-MC1 charts for the covariance matrix (16) when
m=25k=05 w1 =d//p....d/yp) H2=d/yp-2,....,d/\/p-2,0,0), us=
(@d/P.....d/yP) and jus = (~d//P.d/ /. ~d/P. ... (~1Vd/P).

d W'—=po p=5 p=10 p=15 d W'—=po p=5 p=10 p=15

EWMA JS-EWMA EWMA  JS-EWMA EWMA JS-EWMA MC1 Js-MC1  MCl1 Js-MC1  MC1 Js-MC1

0 0 20098 200.65 20093 20033 20033 200.84 0 0 200.49° 20158 20110 20217 199.09  199.33
(0.60)>  (0.60) 0.62) (0.62) 0.65)  (0.65) 058  (0.57) (0.52) (0.59) (032) (06)

10w 7917 5506 14616 12615 15922 148.73 1.0 51.55 33.11 90.91 4610 13126  60.59
032)  (0.21) (0.51) (0.45) (057)  (0.55) 02) (0.09) 0.22) 0.11) 0.17)  (0.11)

w2 3156 21.09 98.23 75.73 14314 129.79 W 22.69 16.03 71.97 3377 12823  58.15
(0.14)  (0.07) (0.39) (0.30) (0.54)  (0.50) (0.05) (0.03) 0.15) (0.06) 0.16)  (0.10)

3.0 s 5.19 429 22.98 16.30 3677  27.93 30 s 8.51 6.43 24.63 11.20 50.70  19.91
(0.01)  (0.01) (0.10) (0.06) 020)  (0.14) 0.01) (0.01) (0.02) (0.01) (0.04)  (0.02)

m 1.02 1.01 1.48 135 3.47 3.12 m 3.24 2.60 10.65 5.14 2600  10.52

(1074)  (10™) (0.002)  (0.002) (0.01)  (0.01) 0.002)  (0.001)  (0.006)  (0.003)  (0.02)  (0.01)

A\es 2655  23.56 63.49 5598  149.03 135.26 \C 13.54 10.20 46.00 2130 13200  52.50

4 ARL. 3 ARL.

b Standard error.

Table 8

The ARLs of the SZ & MZ and JS-SZ & ]JS-MZ combined charts for the covari-
ance matrix from the equi-correlation framework when m = 25, 1 = 0.026,e = 0.4,

11 = @/P.....d/ P, 2 = [@//P—2.....d//p=2.0,0). 3 = (@//P.....d//P)
and (1 = (~d//p.d//p. ~d//p. ...~ 1Pd/ Jp).
d ws—po p=>5 p=10 p=15
SZ&MZ ]S-type SZ&MZ ]S-type SZ&MZ ]S-type
0 0 200.15* 200.73  199.36  200.68  199.22  199.81
0.58)°  (0.59) (0.58) 0.61) 0.61) 0.63)
1.0 o 65.86 37.03 126.34 77.01  158.81  132.98
0.21) (0.06) (0.41) (0.20) 0.52) (0.45)
2 32.47 21.58 76.68 43.48 12042 84.74
(0.06) 0.03) (0.24) (0.08) 0.42) (0.28)
3.0 3 12.34 9.22 27.15 18.77 47.19 32.38
0.01) 0.01) (0.04) (0.02) 0.13) (0.05)
4 2.57 2.08 5.63 4.25 8.72 6.87
0.01) 0.01) (0.01) (0.01) 0.01) 0.01)
A 29.15 28.63 68.80 67.40 167.90  165.30
c5\Cs 37.00 22.20 95.30 5530 21990 145.10
2 ARL.

b Standard error.

b Standard error.

Table 11
The ARLs of the MEWMA and JS-MEWMA charts for the covariance matrix (16)
when m=25k=0.5u;=d//p,..., d/yp), n2=d/J/p-2,....d/\/p—2,0,0),

w3 = (d/yp.....d/yP)and g = (—d//p.d//P. —d/ /B, .... (=1)°d//P).
d W*—po p=5 p=10 p=15
EWMA JS-EWMA EWMA  JS-EWMA EWMA  JS-EWMA
0 0 200.14° 20039 20025 20130  199.68  199.43
(0.60)°  (0.60) 0.62) 0.62) (0.65) (0.65)
1.0 7750 5377 12447 10310 14673 13351
032)  (0.20) (0.46) (0.39) (0.54) 0.51)
2 3252 2162  100.87 78.64 14487 13053
0.15)  (0.07) (0.40) 0.31) (0.54) (0.50)
30 us 5.09 421 12.47 9.48 24.04 18.25
0.01)  (0.01) (0.05) (0.03) 0.13) (0.09)
iy 1.03 1.02 1.89 1.69 3.81 3.41
(1074 (10%) (0.003)  (0.002)  (0.008)  (0.007)
AT 2653 2355 63.50 56.00 20130  149.15
3 ARL.

b Standard error.
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Table 12
The ARLs of the SZ & MZ and JS-SZ & JS-MZ combined charts for the covariance
matrix (16) when m =25, A =0.026, 1 = (d/ /P, ..., d/yp), m2=Wd/\/p-2,...,

d//p-2.0.0). pt3=(/Vp.....d/yp) and s = (~d/\/p.d/P.~d/p. ...
(~1Pd/p).

d M=o p=5 p=10 p=15

SZ&MZ ]S-type

SZ&MZ ]S-type SZ&MZ ]S-type

0 0 200.17° 20026 20041 20051 199.05  200.39

058 (059) (0.59)  (0.61) (0.61)  (0.64)

10 m 6454 3645 10245  57.89 12006  84.33

(021) (006) (034) (0.13) (042)  (0.28)

Ua 3287 2174 7948 4453 11577 7957

(0.06)  (0.03) (025) (0.08) (040)  (0.26)

30 ps 12.12 9.06 2057 1455 2504 1891

(0.01)  (001) (0.02) (0.01) (0.04)  (0.02)

a 2.81 2.27 7.45 552 11.49 8.94

©.01)  (001) (0.01) (001) (0.01)  (0.01)

¢\Ca 2910 2860 6890 6750 168.00 165.30

&\s 3700 2215 9530 5480 219.80 144.10
2 ARL.

b Standard error.

to achieve a desired ARLy. Although there are many combinations
of (¢}, c5) and (cs,¢s5) such that the ARLg for the SZ & MZ and
JS-SZ & ]JS-MZ combined charts equals 200, we chose the values
of (c}.cs) and (cs,¢s) so that the SZ chart and JS-SZ have ARLy =
400, and the SZ & MZ and JS-SZ & ]JS-MZ combined charts have
ARLy = 200.

For all three covariance matrix cases, the simulation results show
that the JS-type charts are better than the conventional charts because
the JS-type charts have shorter out-of-control ARLs. The improvement
of the JS-type charts is significant for most situations. Only for the situ-
ations of [u4 in the tables, the improvement level of the JS-type charts
is not as significant as the other situations. Both the ]JS-type charts
and the conventional charts can detect this out of control situation
easily.

In Tables 1-12, we present the results for the cases of d = 1 and
d = 3.The performance for 1 < d < 3 (not presented here) is between
the performance for the case of d = 1 and that for the case of d = 3.
These tables show that the ]JS-type control charts have better perfor-
mance than the conventional charts. Although the improvement level
of the JS-type chart depends on the form of w*, from the simulation
results, the JS-type charts can always improve the conventional charts
for different pattern of w* if the shift is not really small. When a shift
is really small, neither the JS-type charts nor the conventional charts
can easily detect it. In this case, it would be more difficult to compare
their performances.

5. Control limit comparison

The simulation results in Section 4 show that the ]JS-type charts
have smaller ARL; than the conventional charts. From the simulation
results, we see that the control limits for the JS-type control charts are
smaller than those of the conventional charts. The comparison of the
control limits for the T2 and JS-TZ charts for large subgroup sample
sizes when the covariance matrix is known is given in the following
theorem.

Theorem. For p > 3, under the same ARLy, the control limit of the JS-T?
chart is less than or equal to that of the T? chart for the case of known
covariance matrix when the subgroup sample size is large.

Proof. Inthe previous discussion, we assumed that the sample size of
the subgroup equals 1. Here we consider the case where the sample
size of the subgroup is greater than 1. Hence, in the current situa-
tion, for the JS-T2 chart, X; in (5) is replaced by X;, which denotes the
sample mean vector of the observations in the subgroup i, and X’

in (5) is replaced by X/S which represents the average of the James-
Stein estimators from the in-control samples in the Phase I study.
Similarly, for the T2 chart, X; is replaced by X; and X is replaced by X,
which represents the average of the sample mean vectors from the
in-control samples in the Phase I study. It is worth noting that
the estimators X and XIS are obtained from the Phase I study, while
the estimator X; is calculated from the Phase II monitoring. Hence X;
and X are mutually independent and so are X; and X/S.

Note that the ARLy for a control chart in the Phase II study is
the average number of samples taken until the monitoring statistic
is greater than the control limit when the process is in control. For
the case of known covariance matrix, without loss of generality, we
assume X = I. To prove that the control limit of the JS-T? chart is less
than or equal to that of the T2 chart, it suffices to show that for any
constants > 0

P (X — X5 < 8) = P (IXi —X| <5).i=1.2,....

where Py, (-) denotes that the probability is evaluated under u = o,
which is the in-control mean vector.

When the process is in control, we have X; — /o in probability.
Thus, for a given constant € > 0 we have

Puo (1Xi — o] < €) > 1. (17)
By (4) and the fact that
Py (Ito = XB| < 8) = Pyy (|10 — X| < 5)

is a continuous function of 1, there exists a ¢ > 0 and an 1 > 0 such
that

Pu(' —X5] <) = Pu(l' =X <s) > ¢ (18)

for ' — pol < 1. )
By (17), we have Py, (|X; — 0| = €) — 0, for any € > 0. Therefore,
for a constant (¢ + p)/[2(1 + ¢)], there exists a ng such that

Py (1Xi = 1ol > m) < (€ + p)/12(1 + 0], (19)

when the subgroup sample size n* in Phase II is greater than n,
where p is a positive constant to be determined later. Also, by a
straightforward calculation, we have

Pﬂo(lxi _)-(Jsl < S)_P#O(DZ[ —)_(| < S)
= Pug (X = X5] < . |Ki = ol > 1) + Py (1X; — X5

<8 X~ pol =)

Py, (1K = X| <5, 1% = pol > n) — Py (X — X|

<8, |Xi — ol < n). (20)
Let

W = [P (% — X5 <1 X — pol < 1)

Py (X = X[ <51 1% — ttol < )Py (1K — ol < 1)
and
V =Py, (% — X <5, 1% — 1ol > ).

where P(A|B) denotes a conditional probability of event A given
event B.
Then (20) can be rewritten as

Py (IXi = XB] < 5. 1X; — ol > m) + W - V. (21)
To prove that (21) is not less than zero, note that the first term in
(21), Py (1Xi — X5 <s, |X; — 10| > n) = 7, is greater than zero. Con-
ditioning on the event |X; — wo| < n, from (18) we have
Puo (IXi = XB| < s 1Xi — pol < m) = Pyo(IXi = X| <5 | |Xi — ol
=m=¢
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for n* > ng. By this and (19), we have

W=¢o{1-(@C+p)20+ )]}

when n* > ny.
Also by (19), we have

V<@ +p)/[20+7)]
for n* > ng. Hence,

W-V={1-C+p)/20+0} =€ +p)/[20+ )]
= -p)2.
If ¢ > 0, we choose a p satisfying0 < p < ¢ orif ¢ =0, we choose a p

satisfying 0 < p < 2t. Then (21) is greater than zero. Thus, the proof
is completed. O

In the proof of the theorem, we require that the subgroup sample
size is large because we need to apply the law of large number to
prove it. This theorem discusses the known covariance case. As for
the unknown covariance matrix case, from the control limits shown
in Section 4, it is likely that the result is still valid. However, it is not
easy to obtain a similar result for the unknown covariance matrix
case because, to our best knowledge, there is no similar result as
Eq. (4) established for the unknown covariance case in the literature.
Therefore, for the unknown covariance matrix case, the theoretical
results are still under study. In addition, since the distribution of the
James-Stein estimator has not been established in the literature, the
study for applying the result of the theorem to other charts are still on-
going. But from the simulation results, this phenomenon also holds
for other charts. Also the result of the theorem may be related to the
better performance of the chart because we expect that a signal occurs
earlier for a smaller control limit. That is, smaller control limits may
lead to shorter ARL;. As a result, we expect that a chart with a smaller
control limit may lead to better performance under the same ARLy.

6. Example

In this section, we use an example from chemical industry to il-
lustrate the applicability of the proposed charts. The data, adapted

Table 13
Chemical process data.

i X1 X2 X3 X4 i X1 X3 X3 X4

10 20.7 13.6 15.5 16 9.7 20.1 10 16.6
10.5 199 18.1 14.8 17 8.3 18.4 12.5 14.2
9.7 20 16.1 16.5 18 11.9 21.8 14.1 16.2
9.8 20.2 19.1 17.1 19 10.3 20.5 15.6 15.1

215 19.8 183 20 8.9 19 85 14.7
11 20.9 10.3 13.8 21 9.9 20 15.4 159
8.7 18.8 16.9 16.8 22 8.7 19 9.9 16.8

0N U A WN =
—_
—_
~

9.5 19.3 15.3 12.2 23 115 21.8 19.3 12.1

9 10.1 19.4 16.2 158 24 159 24.6 14.7 153
10 9.5 19.6 13.6 14.5 25 12.6 239 17.1 14.2
11 10.5 20.3 17 16.5 26 14.9 25 16.3 16.6

13 11.3 21.6 14 18.7 28 12.8 26.3 13.5 13.7
14 10 19.8 14 15.9 29 13.1 26.1 10.9 16.8
15 8.5 19.2 17.4 158 30 9.8 25.8 14.8 15

from Montgomery (2009, p. 520), include 30 samples (with size 1) of
4 process variables (p = 4) from a chemical process, which are shown
in Table 13.

These data are used to demonstrate the performance of a princi-
pal component analysis in Montgomery (2009). Treating the datain a
similar way as Montgomery (2009), the first 20 samples are assumed
to be drawn from the in-control process and are utilized for the Phase
parameter estimation while the last 10 samples are used for the Phase
Il monitoring. As indicated in Montgomery (2009), there is a mean
vector shift beginning at sample 24 or 25. We treat the sample covari-
ance matrix of the first 20 samples as the true covariance matrix and
make a transformation so that the resulting process variables have the
identity covariance matrix. Then we compare the results of the con-
ventional and JS-type charts using the transformed process variables.
Here the James-Stein estimator of the JS-type control chart shrinks to-
ward the zero vector. The conventional and JS-type control charts for
the 10 samples in the Phase Il monitoring are presented in the figures
below. All control charts have the ARLy approximately equal to 200.

In Fig. 1, the MC1 chart detects an out-of-control signal at the
10th sample while the JS-MC1 chart triggers at the 8th sample. Fig. 2

MCA1 JS-MCH
12 12 s
MC‘Ii MC1i
[ == &

10 101 1

8r 1 8r 1

61 1 61 1

4r 1 4t 1

2r 1 2r 1

0 L L O L L

0 5 10 0 5 10
sample point sample point

Fig. 1. The MC1 and JS-MC1 charts with k = 0.5 for monitoring the last 10 samples in Table 13.



126 H. Wang et al./ European Journal of Operational Research 246 (2015) 119-127

MEWMA
35

30 b

251 b

201 b

15} b

101 b

0 Il Il
0 5 10
sample point

JS-MEWMA

35

O Il Il
0 5 10
sample point

Fig. 2. The MEWMA and JS-MEWMA charts with A = 0.2 for monitoring the last 10 samples in Table 13.

shows that the MEWMA chart detects an out-of-control signal at the
8th sample whereas the [S-MEWMA chart triggers an out-of-control
signal at the 6th sample. Here we do not present the T2 and SZ &
MZ charts and their JS-type counterparts because both the conven-
tional and JS-type charts detect an out-of-control signal at the same
sample. This example shows that the JS-MC1 and JS-MEWMA charts
can detect an out-of-control signal earlier than the corresponding
conventional charts in a practical application when a mean vector
shift occurs.

7. Conclusion

In this article, the multivariate ]JS-type control charts based on
the James-Stein estimator for monitoring the mean in the Phase II
study are proposed for both cases of known and unknown covariance
matrix. Simulation studies show that the ]JS-type control charts, as
compared with the conventional control charts, can have substantial
improvement. But when the Phase I sample size is very large, both
the sample mean and the James-Stein estimator can accurately es-
timate the true mean, the improvement of the control based on the
James-Stein estimator is not as significant as that for the small sam-
ple size case. Thus, the improvement of the |S-type chart depends on
the sample size. Since in high dimensional case, it needs relatively
more observations to obtain an accurate estimator than in the low
dimensional case, the control chart based on the James-Stein estima-
tor can be a competitive alternative when the sample size is not very
large. In addition, the improvement of the JS-type control charts also
depends on the covariance matrix of the process variables. Explor-
ing the relationship between the improvement level of the JS-type
control chart and the form of the covariance matrix is an interesting
problem. In our future work, we will explore the relationship. Finally,
the advantage of the |S-type charts over the conventional charts is
also illustrated in a real example from the chemical industry.
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