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a b s t r a c t

In this study, we focus on improving parameter estimation in Phase I study to construct more accurate Phase II

control limits for monitoring multivariate quality characteristics. For a multivariate normal distribution with

unknown mean vector, the usual mean estimator is known to be inadmissible under the squared error loss

function when the dimension of the variables is greater than 2. Shrinkage estimators, such as the James–Stein

estimators, are shown to have better performance than the conventional estimators in the literature. We

utilize the James–Stein estimators to improve the Phase I parameter estimation. Multivariate control limits

for the Phase II monitoring based on the improved estimators are proposed in this study. The resulting control

charts, JS-type charts, are shown to have substantial performance improvement over the existing ones.

© 2015 Elsevier B.V. and Association of European Operational Research Societies (EURO) within the

International Federation of Operational Research Societies (IFORS). All rights reserved.
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. Introduction

Multivariate control charts are useful tools in detecting shifts in

manufacturing process when the quality characteristics of inter-

st are multivariate. Early research goes back to the T2 control chart

Hotelling, 1947), which detects mean vector shifts in a multivari-

te process based only on the most recent observation, resulting in

nsensitive detection of small mean vector shifts.

There are many other multivariate control charts proposed in

he literature. Crosier (1988) proposed multivariate CUSUM control

harts by either reducing each multivariate observation to a scalar

r forming a CUSUM vector from the observations. Pignatiello and

unger (1990) proposed a CUSUM control chart, MC1, and showed

hat it has better performance than several other CUSUM charts. In

ddition, the MEWMA control chart established by Lowry, Woodall,

hamp, and Rigdon (1992) uses all data information from the early

o the last observations to construct a chart which has the advantage

f smaller average run length for detecting small shifts in the process

ean vector. Reynolds and Cho (2006) and Reynolds and Stoumbos

2008) proposed combining different multivariate control charts for

onitoring process mean vector. For more studies on multivariate

ontrol charts, refer to Chan, Lai, Xie, and Goh (2003), Huwang, Yeh,

nd Wu (2007), Wang (2012) and Woodall and Montgomery (2014).

he use of control charts generally involves two phases, Phase I and

hase II. In the Phase I study, a set of historical data is used to esti-
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ate the parameters of the process and establish control limits for

he Phase II monitoring. In the Phase II monitoring, the data are se-

uentially collected over time to assess whether the parameters of

he process have changed from the estimated values in the Phase I

tudy. Usually before the Phase II monitoring, one must estimate the

n-control process parameters and determine the control limits in the

hase I study. As a result, the accuracy of the Phase I estimation is a

rucial step for the success of the Phase II study.

For monitoring a univariate quality characteristic assumed to fol-

ow a normal distribution, there are only two parameters, the mean

nd variance, that need to be estimated. In this case, the sample mean

nd sample variance are optimal estimators under the squared er-

or loss function. On the contrary, when the number of parameters

eeded to be estimated is greater than two such as in the case of a

ultivariate normal process, it is well known that the conventional

stimators are not optimal under squared error loss. For example,

he sample mean vector is not admissible for estimating the mul-

ivariate normal mean vector under squared error loss when the

imension is greater than two (Berger, 1985). Due to the inadmis-

ibility property of the sample mean vector, the parameter estima-

ion in the Phase I study for monitoring multivariate process can

e improved.

It is well known that the shrinkage estimators have smaller

ean squared errors than the conventional estimators (Lehmann

Casella, 1998; Stein, 1956). Thus, in this study, we propose using

hrinkage estimators to improve the Phase I estimation. Since one of

he well-known shrinkage estimators is the James–Stein estimator,

e propose multivariate control charts based on the James–Stein

stimator in the Phase I study and show that the resulting charts, as
(EURO) within the International Federation of Operational Research Societies (IFORS).
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compared with the conventional charts, have substantial improve-

ment in performance. To carry out this, several well-known charts

with the Phase I estimation based on the conventional estimators and

the James–Stein estimators are studied in the Phase II monitoring, and

their performance is compared in terms of average run length (ARL).

The rest of the paper is organized as follows. The shrinkage esti-

mation approach is introduced in Section 2. The new control charts

based on the James–Stein estimator to estimate the mean vector in the

Phase I study when the covariance matrix is known or unknown are

proposed in Section 3. Section 4 compares the conventional charts

and the new proposed charts in terms of the ARL performance. An

asymptotic result for control limit comparison is given in Section 5.

A real example from the chemical industry is illustrated in Section 6.

Concluding remarks and discussions are given in Section 7.

2. Shrinkage estimation

Suppose that a random sample X1, . . . , Xn follows a multivari-

ate normal distribution N(μ,�) where μ is a p-dimensional vec-

tor and � is a p × p positive definite matrix. First, we assume that

� is known. The conventional estimator for μ is the sample mean

X̄ = ∑n
i=1 Xi/n. Stein (1956) has proved that for estimating μ, un-

der squared error loss, X̄ is inadmissible for p ≥ 3. Namely, there

exists an estimator δ(X1, . . . , Xn) such that the mean squared error

(MSE), E[(δ(X1, . . . , Xn)− μ)′�−1(δ(X1, . . . , Xn)− μ)], of δ(X1, . . . , Xn)
is smaller than or equal to the MSE, E[(X̄ − μ)′�−1(X̄ − μ)], of X̄ for

all μ and the strict inequality holds for some μ when p ≥ 3. An im-

proved estimator, called the James–Stein estimator, is proposed in

James and Stein (1961) with a smaller mean squared error than X̄.

Since then, many studies for developing shrinkage estimators have

been conducted (Casella, 1980; Draper & Van Nostrand, 1979; Efron

& Morris, 1972; Strawderman & Cohen, 1971; Wang, 1999, 2000).

In our study, we use the James–Stein estimator to construct better

control charts. The standard form of the James–Stein estimator is

given by

X̄
JS
0 =

(
1 − p − 2

n(X̄ − v)′�−1(X̄ − v)

)
· (X̄ − v)+ v, (1)

where v is a fixed vector to which we intend to shrink X̄. By Lehmann

and Casella (1998), v can be selected to be any p-dimensional vector.

An improved James–Stein estimator has the form

X̄JS =
(

1 − p − 2

n(X̄ − v)′�−1(X̄ − v)

)+
· (X̄ − v)+ v, (2)

which is shown to have smaller MSE than the standard James–Stein

estimator (1). Here the notation x+ is defined to be

x+ =
{

x if x > 0,

0 otherwise.

Note that in this study, we adopt the form (2) as the James–Stein

estimator for constructing improved control charts.

It is worth noting that a confidence set based on the shrinkage

estimator is preferable to that based on the conventional estimator,

resulting in the potential use of the James–Stein estimator for con-

structing better charts. Usually, a 1 − α confidence set for μ based on

the sample mean vector X̄ is

C = {μ : (X̄ − μ)′�−1(X̄ − μ) ≤ c/n},
where c is the 1 − α cutoff point of a chi-square distribution with

p degrees of freedom. The exact coverage probability Pr(C) of the

confidence set C equals 1 − α. However, the confidence set based on

the James–Stein estimator

CJS = {μ : (X̄JS − μ)′�−1(X̄JS − μ) ≤ c/n} (3)
as been shown to have a higher coverage probability than 1 − α
nalytically and numerically. That is,

r(CJS) ≥ Pr(C), (4)

nd the strict inequality in (4) holds for some μ when p ≥ 3 (Brown,

966; DasGupta, Ghosh, & Zen, 1995; Hwang & Casella, 1982; Joshi,

967).

Since the sets CJS and C have the same volume, property (4) shows

hat the set CJS can include a larger proportion of the population than

he set C with the same capacity, which leads to better performance

f the set CJS. Using property (4), in Section 3 we will propose several

ontrol charts in the Phase II study for monitoring the mean vector μ
ith the James–Stein estimator (2) used in the Phase I estimation.

Note that although v in (2) can be selected to be any vector, the

erformance of the James–Stein estimator depends on v. If we do not

ave any preference of selecting v, we can select the value of v near

he sample mean vector or being the zero vector.

. JS-type control charts

.1. Known covariance case

In this section, we propose charts for monitoring μ by modify-

ng several well-known conventional charts by replacing the sample

ean with the James–Stein estimator. For simplicity, we only con-

ider the case of subgroup size 1 (i.e., individual observation) in our

tudy. However, the results can be easily extended to the case where

he subgroup size is greater than 1. In the following, the notation X̄

enotes the sample mean vector of the in-control observations in the

hase I study and Xi ∼ N(μ,�), with known �, denotes the observa-

ion of subgroup i, i = 1, 2, . . . , in the Phase II monitoring. Since the

roposed charts are obtained by replacing the sample mean with the

ames–Stein estimator in the original charts, we refer to these charts

s the JS-type control charts.

1. The JS-T2 chart.

The first proposed control chart is to modify the Hotelling-T2 chart

(Hotelling, 1947). When the covariance matrix � is known, the

monitoring statistic for the sample i is

T
JS
i

= (Xi − X̄JS)′�−1(Xi − X̄JS). (5)

The chart gives an out-of-control signal if

T
JS
i

> c1, (6)

where c1 is the constant to achieve a desired in-control average

run length (ARL0). The conventional Hotelling-T2 chart replaces

X̄JS with X̄ in (5) (Tracy, Young, & Mason, 1992).

2. The JS-MC1 chart.

Pignatiello and Runger (1990) proposed the MC1 control chart and

showed that it can improve Crosier’s (1988) multivariate CUSUM

control charts. The modified monitoring statistic for the MC1 chart

is

MC1
JS
i

= max{‖Ci‖ − kni, 0},
where k > 0,

Ci =
i∑

l=i−ni+1

(Xl − X̄JS), (7)

ni =
{

1 if MC1
JS
i−1

≤ 0,

ni−1 + 1 if MC1
JS
i−1

> 0,

‖Ci‖ =
√

C′
i
�−1Ci

and

MC1
JS = 0.
0
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The JS-MC1 chart gives an out-of-control signal when

MC1
JS
i

> c2, (8)

where c2 is the constant to achieve a specified ARL0. The conven-

tional MC1 chart replaces X̄JS in (7) with X̄. Pignatiello and Runger

(1990) chose the reference parameter k to be half of the distance

between μ∗ and μ0, where μ0 is the in-control mean vector value

and μ∗ represents a specified unacceptable out-of-control mean

vector value.

3. The JS-MEWMA chart.

The MEWMA control chart was first developed by Lowry et al.

(1992). The modified JS-type chart statistic is

E
JS
i

= Z′
i�

−1
Zi

Zi,

where

Zi = λ(Xi − X̄JS)+ (1 − λ)Zi−1, (9)

and

�Zi
= λ

(2 − λ)
[1 − (1 − λ)2i]�.

Here Z0 = 0 (the zero vector) and λ is a constant, 0 < λ ≤ 1. The

parameter λ determines the rate at which ‘older’ data enter into

the calculation of the statistic. Thus, a large value of λ gives more

weight to recent data and less weight to older data. When choosing

the value of λ, it is recommended that small values of λ, such as

0.2, are used to detect small shifts, and larger values for larger

shifts. The MEWMA chart gives an out-of-control signal if

E
JS
i

> c3, (10)

where c3 is a specified constant. The constant c3 is chosen to

achieve a desired ARL0. The conventional MEWMA chart replaces

X̄JS with X̄ in (9).

4. The JS-SZ & JS-MZ combined chart.

Reynolds and Cho (2006) and Reynolds and Stoumbos (2008) pro-

posed combining different multivariate control charts for process

monitoring. One of them is the combination of SZ and MZ control

charts, where the SZ denotes the Hotelling-T2 chart and the MZ

for the MEWMA chart. Based on the SZ & MZ combined chart, we

proposed a JS-SZ & JS-MZ combined chart, which signals if

T
JS
i

> c4 (11)

for the JS-SZ chart or

Z′
i�

−1
∞ Zi > c5 (12)

for the JS-MZ chart, where T
JS
i

is defined in (5), Zi is defined in (9),

and �∞ = λ�/(2 − λ). Here the constants c4 and c5 are chosen to

achieve a desired ARL0. The conventional JS-SZ & JS-MZ combined

chart replaces X̄JS with X̄ in T
JS
i

and Zi.

.2. Unknown covariance matrix

In Section 3.1, we considered the case with known covariance

atrix. However, in applications, it is likely that the covariance matrix

s unknown. For the unknown covariance matrix case, we propose

sing a modified James–Stein estimator of the form

¯ JS
S =

[
1 − p − 2

n(X̄ − v)′S−1(X̄ − v)

]+
· (X̄ − v)+ v, (13)

here S is the sample covariance matrix of the in-control observations

n the Phase I study. We have included the details of the JS-type charts

n the case of a known covariance matrix. By a similar argument, we

ropose control charts for the case of unknown covariance matrix

ith the James–Stein estimator (2) and � in the four JS-type control

harts in Section 3 replaced by the modified James–Stein estimator

13) and the sample covariance S, respectively.
. Simulation study

In this section, we conduct a simulation study to compare the JS-

ype control charts with the conventional control charts in terms of

heir ARLs. In applications, it is usually the case that the covariance

atrix is unknown. Thus, here we mainly consider the case of un-

nown covariance matrix. In the simulations, we consider the case

hat the true mean of the process is not equal to the zero vector 0 and

he James–Stein estimator shrinks toward the point 0. Here we do not

ssume that the true mean is the zero vector because in applications,

he point that we shrink toward is usually not the true mean.

To consider a more general case, we assume that

= μ0 = (h, −h, h, −h, . . . , (−1)p+1h)
′
, where h is a constant, when

he process is in control and μ = μ∗ when the process is under an out-

f-control condition. In general, when we select the point v of (13) in a

-dimensional space, it is possible that the values of this point in some

imensions are greater than (or less than) the true parameter values

n the corresponding dimensions. Since in the simulation study, the

ames–Stein estimator shrinks toward the zero vector, we select the

ype of μ0 such that its values in some dimensions are greater than

and its values in other dimensions are less than zero. We also tried

ther in control parameter values, such as μ∗
0 = (h, h, h, h, . . . , h)

′
. The

imulation shows that it has a similar performance as that of μ0. In

his study, h is set to 0.03 and v in (13) is selected to be the zero

ector 0. That is, the James–Stein estimator (13) shrinks toward the

oint 0.

From the simulation study, we found that the JS-type control

harts usually have significant improvement when the true mean

s in a known region which should not be too wide, and v in the

ames–Stein estimator is selected to be a point in this region. If we

o not have this knowledge, and just let the James–Stein estimator

hrink to a randomly selected point, the JS-type charts may not have

ignificant improvement.

To investigate the performance of the JS-type charts for different

ituations, we consider three cases with different covariance matri-

es: (i) the covariance matrix arising from an autoregressive model,

ii) the covariance matrix from an equi-correlation framework, and

iii) a specific nonsparse covariance matrix. For the first case, we con-

ider the covariance matrix from an autoregressive model AR(1). Let

t be a time series with the model

t = 1 + φYt−1 + εt,

here φ is a constant and εt is assumed to follow a standard normal

istribution N(0, 1). The covariance matrix of Yt, t = 1, . . . , p, has the

orm

ij =
{

1/(1 − φ2) if i = j

φ|j−i|/(1 − φ2) if j 	= i,
(14)

here i, j = 1, . . . , p. In the second circumstance, we consider the co-

ariance matrix of the form

ij =
{

1 if i = j
e if j 	= i,

(15)

here e is a constant between 0 and 1 and i, j = 1, . . . , p. For the third

ase, since in the simulation study the dimension of the variables does

ot exceed 15, we consider a covariance matrix of the form

ij =
{

1 if i = j
(15 − i)/(15

√
p) if j 	= i,

(16)

here i, j = 1, . . . , p.

The ARL performance is presented for various values of d = ||μ∗ −
0||. To have a fair comparison, we set the control limits of each

ontrol chart with the same ARL0 when the process is in control, and

hen the ARLs for different out-of-control scenarios are estimated. A

hart with a larger ARL in an out-of-control condition is not preferable

ecause it needs more data to signal.
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Table 1

The ARLs of the T2 and JS-T2 charts for the covariance matrix from

the autoregression matrix when m = 25, φ = 0.3,μ1 = (d/
√

p, . . . , d/
√

p),

μ2 = (d/
√

p − 2, . . . , d/
√

p − 2, 0, 0), μ3 = (d/
√

p, . . . , d/
√

p) and μ4 = (−d/
√

p, d/
√

p,

−d/
√

p, . . . , (−1)pd/
√

p).

d μ∗ − μ0 p = 5 p = 10 p = 15

T2 JS-T2 T2 JS-T2 T2 JS-T2

0 0 199.81a 200.21 200.35 201.73 200.35 200.07

(0.60)b (0.61) (0.63) (0.63) (0.67) (0.67)

1.0 μ1 137.27 131.43 164.89 162.32 181.73 179.84

(0.48) (0.46) (0.56) (0.56) (0.64) (0.63)

μ2 130.86 123.68 163.95 161.54 180.07 177.88

(0.47) (0.45) (0.56) (0.55) (0.63) (0.63)

3.0 μ3 18.37 16.24 50.47 47.08 91.42 87.29

(0.10) (0.08) (0.25) (0.24) (0.43) (0.41)

μ4 2.16 1.86 8.04 6.82 24.96 22.06

(0.01) (0.01) (0.05) (0.04) (0.18) (0.16)

c′
1\c1 24.40 23.90 57.48 56.27 135.54 133.24

a ARL.
b Standard error.

Table 2

The ARLs of the MC1 and JS-MC1 charts for the covariance matrix from

the autoregression matrix when m = 25, k = 0.5, φ = 0.3,μ1 = (d/
√

p, . . . , d/
√

p),

μ2 = (d/
√

p − 2, . . . , d/
√

p − 2, 0, 0), μ3 = (d/
√

p, . . . , d/
√

p) and μ4 = (−d/
√

p, d/
√

p,

−d/
√

p, . . . , (−1)pd/
√

p).

d μ∗ − μ0 p = 5 p = 10 p = 15

MC1 JS-MC1 MC1 JS-MC1 MC1 JS-MC1

0 0 200.69a 200.93 199.66 200.88 199.60 199.17

(0.58)b (0.57) (0.52) (0.58) (0.32) (0.59)

1.0 μ1 34.79 22.99 66.99 32.16 116.32 50.44

(0.12) (0.05) (0.13) (0.06) (0.14) (0.07)

μ2 29.98 20.07 65.52 31.44 66.11 27.64

(0.09) (0.04) (0.13) (0.05) (0.05) (0.02)

3.0 μ3 6.87 5.21 18.83 8.90 41.10 16.83

(0.005) (0.004) (0.01) (0.006) (0.03) (0.01)

μ4 3.25 2.56 9.42 4.70 21.74 9.01

(0.001) (0.001) (0.005) (0.002) (0.01) (0.01)

c′
2\c2 13.55 10.19 45.71 21.74 132.30 53.43

a ARL.
b Standard error.

Table 3

The ARLs of the MEWMA and JS-MEWMA charts for the covariance matrix

from the autoregression model when m = 25, λ = 0.2, φ = 0.3 μ1 = (d/
√

p, . . .

, d/
√

p), μ2 = (d/
√

p − 2, . . . , d/
√

p − 2, 0, 0), μ3 = (d/
√

p, . . . , d/
√

p) and

μ4 = (−d/
√

p, d/
√

p,−d/
√

p, . . . , (−1)pd/
√

p).

d μ∗ − μ0 p = 5 p = 10 p = 15

EWMA JS-EWMA EWMA JS-EWMA EWMA JS-EWMA

0 0 200.52a 200.55 200.75 201.26 200.33 200.62

(0.6)b (0.6) (0.61) (0.62) (0.65) (0.65)

1.0 μ1 54.32 35.99 94.95 72.96 129.20 113.89

(0.24) (0.13) (0.38) (0.29) (0.50) (0.50)

μ2 46.18 29.77 92.24 71.08 128.72 113.10

(0.2) (0.11) (0.37) (0.29) (0.50) (0.46)

3.0 μ3 3.31 2.80 6.55 5.30 13.62 10.64

(0.006) (0.005) (0.02) (0.01) (0.07) (0.04)

μ4 1.03 1.02 1.51 1.38 2.55 2.31

(10−4) (10−4) (0.002) (0.002) (0.004) (0.004)

c′
3\c3 26.54 23.55 63.45 56.00 149.07 134.68

a ARL.
b Standard error.

Table 4

The ARLs of the SZ & MZ and JS-SZ & JS-MZ combined charts for the covari-

ance matrix from the autoregression matrix when m = 25, φ = 0.3, λ = 0.026,μ1 =
(d/

√
p, . . . , d/

√
p), μ2 = (d/

√
p − 2, . . . , d/

√
p − 2, 0, 0), μ3 = (d/

√
p, . . . , d/

√
p) and

μ4 = (−d/
√

p, d/
√

p,−d/
√

p, . . . , (−1)pd/
√

p).

d μ∗ − μ0 p = 5 p = 10 p = 15

SZ & MZ JS-type SZ & MZ JS-type SZ & MZ JS-type

0 0 201.66a 201.21 200.43 201.14 200.15 200.89

(0.58)b (0.59) (0.59) (0.61) (0.61) (0.64)

1.0 μ1 47.24 28.48 74.39 42.01 98.52 64.34

(0.13) (0.04) (0.24) (0.07) (0.35) (0.19)

μ2 41.8 25.88 72.18 41.25 96.73 62.63

(0.1) (0.3) (0.23) (0.07) (0.34) (0.18)

3.0 μ3 9.05 6.88 14.91 10.83 19.66 15.15

(0.01) (0.01) (0.02) (0.01) (0.02) (0.02)

μ4 2.84 2.27 5.87 4.42 8.80 6.94

(0.01) (0.01) (0.01) (0.01) (0.01) (0.01)

c′
4\c4 29.20 28.60 68.90 67.50 168.00 165.50

c′
5\c5 37.00 22.20 95.60 55.30 220.00 145.00

a ARL.
b Standard error.

Table 5

The ARLs of the T2 and JS-T2 charts for the covariance matrix from the

equi-correlation framework when m = 25, e = 0.4, μ1 = (d/
√

p, . . . , d/
√

p),

μ2 = (d/
√

p − 2, . . . , d/
√

p − 2, 0, 0), μ3 = (d/
√

p, . . . , d/
√

p) and μ4 = (−d/
√

p,

d/
√

p,−d/
√

p, . . . , (−1)pd/
√

p).

d μ∗ − μ0 p = 5 p = 10 p = 15

T2 JS-T2 T2 JS-T2 T2 JS-T2

0 0 200.02a 199.96 200.14 200.29 200.61 200.39

(0.61)b (0.61) (0.63) (0.63) (0.67) (0.67)

1.0 μ1 153.61 148.55 184.89 183.26 194.57 193.80

(0.52) (0.50) (0.60) (0.60) (0.66) (0.66)

μ2 113.55 106.76 167.23 164.10 185.89 184.53

(0.43) (0.40) (0.57) (0.56) (0.64) (0.64)

3.0 μ3 33.62 30.14 107.20 102.07 154.37 151.24

(0.17) (0.14) (0.43) (0.41) (0.58) (0.57)

μ4 1.90 1.63 7.41 6.23 24.14 21.47

(0.01) (0.01) (0.05) (0.04) (0.17) (0.16)

c′
1\c1 24.38 23.87 57.48 56.26 135.44 133.16

a ARL.
b Standard error.
Comparisons of the four charts with their JS-type counterparts are

presented in Tables 1–12, which tabulate the ARLs for different values

of μ∗ when the in-control process mean vector is estimated from

m = 25 observations in the Phase I study. Let c′
i
s denote the constants

used in original control charts corresponding to the constant cis used

in the JS-type charts. The last row of each table gives the values of

c′
i

and ci used for the control limits such that all charts have the

ARL0 approximately equal to 200. The replication size used in this

simulation study is 200,000. The corresponding standard errors for

each ARL calculation are given in parentheses.

In the out-of-control scenarios, we consider three different mean

shift patterns. The three forms of μ∗ − μ0 are (d/
√

p, . . . , d/
√

p),
(d/

√
p − 2, . . . , d/

√
p − 2, 0, 0) and (−d/

√
p, d/

√
p, −d/

√
p, . . . ,

(−1)pd/
√

p). All of these forms satisfy ||μ∗ − μ0|| = d. Tables 1–4

provide the performance of the conventional charts and the JS-type

charts for the covariance matrix (14) from the autoregressive model

with φ = 0.3. Tables 5–8 present the results for the covariance

matrix from the equi-correlation framework. Tables 9–12 display the

results for the covariance matrix of the form (16). In the simulation

study, the constant k for the MC1 charts in the tables was chosen to

be 0.5 as it is commonly selected and the smoothing constant λ for

the MEWMA charts was selected to be 0.2.

For comparing the SZ & MZ and JS-SZ & JS-MZ combined charts,

it is first necessary to compute the values of (c′ , c′ ) and (c4, c5)
4 5
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Table 6

The ARLs of the MC1 and JS-MC1 charts for the covariance matrix from the

equi-correlation framework when m = 25, k = 0.5, e = 0.4, μ1 = (d/
√

p, . . . , d/
√

p),

μ2 = (d/
√

p − 2, . . . , d/
√

p − 2, 0, 0), μ3 = (d/
√

p, . . . , d/
√

p) and μ4 = (−d/
√

p, d/
√

p,

−d/
√

p, . . . , (−1)pd/
√

p).

d μ∗ − μ0 p = 5 p = 10 p = 15

MC1 JS-MC1 MC1 JS-MC1 MC1 JS-MC1

0 0 200.49a 200.73 200.16 201.55 199.52 200.62

(0.58)b (0.56) (0.52) (0.59) (0.32) (0.61)

1.0 μ1 52.75 34.50 112.07 65.21 162.33 98.98

(0.20) (0.09) (0.3) (0.18) (0.24) (0.29)

μ2 22.22 15.96 69.50 32.50 132.36 58.31

(0.05) (0.02) (0.14) (0.06) (0.17) (0.10)

3.0 μ3 8.61 6.52 30.88 13.88 77.25 29.58

(0.002) (0.001) (0.03) (0.01) (0.07) (0.03)

μ4 3.17 2.49 9.27 4.45 21.60 8.54

(0.001) (0.001) (0.005) (0.002) (0.01) (0.01)

c′
2\c2 13.54 10.19 45.80 21.14 132.38 51.00

a ARL.
b Standard error.

Table 7

The ARLs of the MEWMA and JS-MEWMA charts for covariance matrix from

the equi-correlation framework when m = 25, λ = 0.2, e = 0.4, μ1 = (d/
√

p, . . . ,

d/
√

p), μ2 = (d/
√

p − 2, . . . , d/
√

p − 2, 0, 0), μ3 = (d/
√

p, . . . , d/
√

p) and

μ4 = (−d/
√

p, d/
√

p,−d/
√

p, . . . , (−1)pd/
√

p).

d μ∗ − μ0 p = 5 p = 10 p = 15

EWMA JS-EWMA EWMA JS-EWMA EWMA JS-EWMA

0 0 200.98a 200.65 200.93 200.33 200.33 200.84

(0.60)b (0.60) (0.62) (0.62) (0.65) (0.65)

1.0 μ1 79.17 55.06 146.16 126.15 159.22 148.73

(0.32) (0.21) (0.51) (0.45) (0.57) (0.55)

μ2 31.56 21.09 98.23 75.73 143.14 129.79

(0.14) (0.07) (0.39) (0.30) (0.54) (0.50)

3.0 μ3 5.19 4.29 22.98 16.30 36.77 27.93

(0.01) (0.01) (0.10) (0.06) (0.20) (0.14)

μ4 1.02 1.01 1.48 1.35 3.47 3.12

(10−4) (10−4) (0.002) (0.002) (0.01) (0.01)

c′
3\c3 26.55 23.56 63.49 55.98 149.03 135.26

a ARL.
b Standard error.

Table 8

The ARLs of the SZ & MZ and JS-SZ & JS-MZ combined charts for the covari-

ance matrix from the equi-correlation framework when m = 25, λ = 0.026, e = 0.4,

μ1 = (d/
√

p, . . . , d/
√

p), μ2 = (d/
√

p − 2, . . . , d/
√

p − 2, 0, 0), μ3 = (d/
√

p, . . . , d/
√

p)

and μ4 = (−d/
√

p, d/
√

p,−d/
√

p, . . . , (−1)pd/
√

p).

d μ∗ − μ0 p = 5 p = 10 p = 15

SZ & MZ JS-type SZ & MZ JS-type SZ & MZ JS-type

0 0 200.15a 200.73 199.36 200.68 199.22 199.81

(0.58)b (0.59) (0.58) (0.61) (0.61) (0.63)

1.0 μ1 65.86 37.03 126.34 77.01 158.81 132.98

(0.21) (0.06) (0.41) (0.20) (0.52) (0.45)

μ2 32.47 21.58 76.68 43.48 120.42 84.74

(0.06) (0.03) (0.24) (0.08) (0.42) (0.28)

3.0 μ3 12.34 9.22 27.15 18.77 47.19 32.38

(0.01) (0.01) (0.04) (0.02) (0.13) (0.05)

μ4 2.57 2.08 5.63 4.25 8.72 6.87

(0.01) (0.01) (0.01) (0.01) (0.01) (0.01)

c′
4\c4 29.15 28.63 68.80 67.40 167.90 165.30

c′
5\c5 37.00 22.20 95.30 55.30 219.90 145.10

a ARL.
b Standard error.

Table 9

The ARLs of the T2 and JS-T2 charts for the covariance matrix (16) when m = 25,

μ1 = (d/
√

p, . . . , d/
√

p), μ2 = (d/
√

p − 2, . . . , d/
√

p − 2, 0, 0), μ3 = (d/
√

p, . . . , d/
√

p)

and μ4 = (−d/
√

p, d/
√

p,−d/
√

p, . . . , (−1)pd/
√

p).

d μ∗ − μ0 p = 5 p = 10 p = 15

T2 JS-T2 T2 JS-T2 T2 JS-T2

0 0 200.38a 200.63 200.51 200.64 200.90 200.56

(0.61)b (0.61) (0.63) (0.63) (0.67) (0.67)

1.0 μ1 152.36 147.43 179.31 176.69 187.20 185.61

(0.51) (0.50) (0.59) (0.59) (0.65) (0.64)

μ2 114.44 107.31 169.68 166.79 185.84 184.58

(0.43) (0.40) (0.57) (0.57) (0.64) (0.64)

3.0 μ3 32.88 29.58 80.82 76.04 112.98 109.05

(0.16) (0.14) (0.36) (0.34) (0.48) (0.48)

μ4 2.19 1.88 12.99 11.07 41.92 37.95

(0.01) (0.01) (0.08) (0.07) (0.26) (0.24)

c′
1\c1 24.38 23.87 57.48 56.25 135.54 133.24

a ARL.
b Standard error.

Table 10

The ARLs of the MC1 and JS-MC1 charts for the covariance matrix (16) when

m = 25, k = 0.5, μ1 = (d/
√

p, . . . , d/
√

p), μ2 = (d/
√

p − 2, . . . , d/
√

p − 2, 0, 0), μ3 =
(d/

√
p, . . . , d/

√
p) and μ4 = (−d/

√
p, d/

√
p,−d/

√
p, . . . , (−1)pd/

√
p).

d μ∗ − μ0 p = 5 p = 10 p = 15

MC1 JS-MC1 MC1 JS-MC1 MC1 JS-MC1

0 0 200.49a 201.58 201.10 202.17 199.09 199.33

(0.58)b (0.57) (0.52) (0.59) (0.32) (0.6)

1.0 μ1 51.55 33.11 90.91 46.10 131.26 60.59

(0.2) (0.09) (0.22) (0.11) (0.17) (0.11)

μ2 22.69 16.03 71.97 33.77 128.23 58.15

(0.05) (0.03) (0.15) (0.06) (0.16) (0.10)

3.0 μ3 8.51 6.43 24.63 11.20 50.70 19.91

(0.01) (0.01) (0.02) (0.01) (0.04) (0.02)

μ4 3.24 2.60 10.65 5.14 26.00 10.52

(0.002) (0.001) (0.006) (0.003) (0.02) (0.01)

c′
2\c2 13.54 10.20 46.00 21.30 132.00 52.50

a ARL.
b Standard error.

Table 11

The ARLs of the MEWMA and JS-MEWMA charts for the covariance matrix (16)

when m = 25, k = 0.5,μ1 = (d/
√

p, . . . , d/
√

p), μ2 = (d/
√

p − 2, . . . , d/
√

p − 2, 0, 0),

μ3 = (d/
√

p, . . . , d/
√

p) and μ4 = (−d/
√

p, d/
√

p,−d/
√

p, . . . , (−1)pd/
√

p).

d μ∗ − μ0 p = 5 p = 10 p = 15

EWMA JS-EWMA EWMA JS-EWMA EWMA JS-EWMA

0 0 200.14a 200.39 200.25 201.30 199.68 199.43

(0.60)b (0.60) (0.62) (0.62) (0.65) (0.65)

1.0 μ1 77.50 53.77 124.47 103.10 146.73 133.51

(0.32) (0.20) (0.46) (0.39) (0.54) (0.51)

μ2 32.52 21.62 100.87 78.64 144.87 130.53

(0.15) (0.07) (0.40) (0.31) (0.54) (0.50)

3.0 μ3 5.09 4.21 12.47 9.48 24.04 18.25

(0.01) (0.01) (0.05) (0.03) (0.13) (0.09)

μ4 1.03 1.02 1.89 1.69 3.81 3.41

(10−4) (10−4) (0.003) (0.002) (0.008) (0.007)

c′
3\c3 26.53 23.55 63.50 56.00 201.30 149.15

a ARL.
b Standard error.
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Table 12

The ARLs of the SZ & MZ and JS-SZ & JS-MZ combined charts for the covariance

matrix (16) when m = 25, λ = 0.026,μ1 = (d/
√

p, . . . , d/
√

p), μ2 = (d/
√

p − 2, . . . ,

d/
√

p − 2, 0, 0), μ3 = (d/
√

p, . . . , d/
√

p) and μ4 = (−d/
√

p, d/
√

p,−d/
√

p, . . . ,

(−1)pd/
√

p).

d μ∗ − μ0 p = 5 p = 10 p = 15

SZ & MZ JS-type SZ & MZ JS-type SZ & MZ JS-type

0 0 200.17a 200.26 200.41 200.51 199.05 200.39

(0.58)b (0.59) (0.59) (0.61) (0.61) (0.64)

1.0 μ1 64.54 36.45 102.45 57.89 120.06 84.33

(0.21) (0.06) (0.34) (0.13) (0.42) (0.28)

μ2 32.87 21.74 79.48 44.53 115.77 79.57

(0.06) (0.03) (0.25) (0.08) (0.40) (0.26)

3.0 μ3 12.12 9.06 20.57 14.55 25.04 18.91

(0.01) (0.01) (0.02) (0.01) (0.04) (0.02)

μ4 2.81 2.27 7.45 5.52 11.49 8.94

(0.01) (0.01) (0.01) (0.01) (0.01) (0.01)

c′
4\c4 29.10 28.60 68.90 67.50 168.00 165.30

c′
5\c5 37.00 22.15 95.30 54.80 219.80 144.10

a ARL.
b Standard error.
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to achieve a desired ARL0. Although there are many combinations

of (c′
4, c′

5) and (c4, c5) such that the ARL0 for the SZ & MZ and

JS-SZ & JS-MZ combined charts equals 200, we chose the values

of (c′
4, c′

5) and (c4, c5) so that the SZ chart and JS-SZ have ARL0 =
400, and the SZ & MZ and JS-SZ & JS-MZ combined charts have

ARL0 = 200.

For all three covariance matrix cases, the simulation results show

that the JS-type charts are better than the conventional charts because

the JS-type charts have shorter out-of-control ARLs. The improvement

of the JS-type charts is significant for most situations. Only for the situ-

ations of μ4 in the tables, the improvement level of the JS-type charts

is not as significant as the other situations. Both the JS-type charts

and the conventional charts can detect this out of control situation

easily.

In Tables 1–12, we present the results for the cases of d = 1 and

d = 3. The performance for 1 < d < 3 (not presented here) is between

the performance for the case of d = 1 and that for the case of d = 3.

These tables show that the JS-type control charts have better perfor-

mance than the conventional charts. Although the improvement level

of the JS-type chart depends on the form of μ∗, from the simulation

results, the JS-type charts can always improve the conventional charts

for different pattern of μ∗ if the shift is not really small. When a shift

is really small, neither the JS-type charts nor the conventional charts

can easily detect it. In this case, it would be more difficult to compare

their performances.

5. Control limit comparison

The simulation results in Section 4 show that the JS-type charts

have smaller ARL1 than the conventional charts. From the simulation

results, we see that the control limits for the JS-type control charts are

smaller than those of the conventional charts. The comparison of the

control limits for the T2 and JS-T2 charts for large subgroup sample

sizes when the covariance matrix is known is given in the following

theorem.

Theorem. For p ≥ 3, under the same ARL0, the control limit of the JS-T2

chart is less than or equal to that of the T2 chart for the case of known

covariance matrix when the subgroup sample size is large.

Proof. In the previous discussion, we assumed that the sample size of

the subgroup equals 1. Here we consider the case where the sample

size of the subgroup is greater than 1. Hence, in the current situa-

tion, for the JS-T2 chart, Xi in (5) is replaced by X̄i, which denotes the

sample mean vector of the observations in the subgroup i, and X̄JS
n (5) is replaced by ¯̄XJS which represents the average of the James–

tein estimators from the in-control samples in the Phase I study.

imilarly, for the T2 chart, Xi is replaced by X̄i and X̄ is replaced by ¯̄X,

hich represents the average of the sample mean vectors from the

n-control samples in the Phase I study. It is worth noting that

he estimators ¯̄X and ¯̄XJS are obtained from the Phase I study, while

he estimator X̄i is calculated from the Phase II monitoring. Hence X̄i

nd ¯̄X are mutually independent and so are X̄i and ¯̄XJS.

Note that the ARL0 for a control chart in the Phase II study is

he average number of samples taken until the monitoring statistic

s greater than the control limit when the process is in control. For

he case of known covariance matrix, without loss of generality, we

ssume � = I. To prove that the control limit of the JS-T2 chart is less

han or equal to that of the T2 chart, it suffices to show that for any

onstant s > 0

μ0
(|X̄i − ¯̄XJS| < s) ≥ Pμ0

(|X̄i − ¯̄X| < s), i = 1, 2, . . . ,

here Pμ0
(·) denotes that the probability is evaluated under μ = μ0,

hich is the in-control mean vector.

When the process is in control, we have X̄i → μ0 in probability.

hus, for a given constant ε > 0 we have

μ0
(|X̄i − μ0| < ε) → 1. (17)

y (4) and the fact that

μ0
(|μ0 − ¯̄XJS| < s)− Pμ0

(|μ0 − ¯̄X| < s)

s a continuous function of μ0, there exists a ζ ≥ 0 and an η > 0 such

hat

μ′(|μ′ − ¯̄XJS| < s)− Pμ′(|μ′ − ¯̄X| < s) ≥ ζ (18)

or |μ′ − μ0| ≤ η.

By (17), we have Pμ0
(|X̄i − μ0| ≥ ε) → 0, for any ε > 0. Therefore,

or a constant (ζ + ρ)/[2(1 + ζ )], there exists a n0 such that

μ0
(|X̄i − μ0| > η) < (ζ + ρ)/[2(1 + ζ )], (19)

hen the subgroup sample size n∗ in Phase II is greater than n0,

here ρ is a positive constant to be determined later. Also, by a

traightforward calculation, we have

Pμ0
(|X̄i − ¯̄XJS| < s)− Pμ0

(|X̄i − ¯̄X| < s)

= Pμ0
(|X̄i − ¯̄XJS| < s, |X̄i − μ0| > η)+ Pμ0

(|X̄i − ¯̄XJS|
< s, |X̄i − μ0| ≤ η)

−Pμ0
(|X̄i − ¯̄X| < s, |X̄i − μ0| > η)− Pμ0

(|X̄i − ¯̄X|
< s, |X̄i − μ0| ≤ η). (20)

Let

= [Pμ0
(|X̄i − ¯̄XJS| < s | |X̄i − μ0| ≤ η)

−Pμ0
(|X̄i − ¯̄X| < s | |X̄i − μ0| ≤ η)]Pμ0

(|X̄i − μ0| ≤ η)

nd

= Pμ0
(|X̄i − ¯̄X| < s, |X̄i − μ0| > η),

here P(A|B) denotes a conditional probability of event A given

vent B.

Then (20) can be rewritten as

μ0
(|X̄i − ¯̄XJS| < s, |X̄i − μ0| > η)+ W − V. (21)

To prove that (21) is not less than zero, note that the first term in

21), Pμ0
(|X̄i − ¯̄XJS| < s, |X̄i − μ0| > η) = τ , is greater than zero. Con-

itioning on the event |X̄i − μ0| ≤ η, from (18) we have

Pμ0
(|X̄i − ¯̄XJS| < s | |X̄i − μ0| ≤ η)− Pμ0

(|X̄i − ¯̄X| < s | |X̄i − μ0|
≤ η) ≥ ζ
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Table 13

Chemical process data.

i x1 x2 x3 x4 i x1 x2 x3 x4

1 10 20.7 13.6 15.5 16 9.7 20.1 10 16.6

2 10.5 19.9 18.1 14.8 17 8.3 18.4 12.5 14.2

3 9.7 20 16.1 16.5 18 11.9 21.8 14.1 16.2

4 9.8 20.2 19.1 17.1 19 10.3 20.5 15.6 15.1

5 11.7 21.5 19.8 18.3 20 8.9 19 8.5 14.7

6 11 20.9 10.3 13.8 21 9.9 20 15.4 15.9

7 8.7 18.8 16.9 16.8 22 8.7 19 9.9 16.8

8 9.5 19.3 15.3 12.2 23 11.5 21.8 19.3 12.1

9 10.1 19.4 16.2 15.8 24 15.9 24.6 14.7 15.3

10 9.5 19.6 13.6 14.5 25 12.6 23.9 17.1 14.2

11 10.5 20.3 17 16.5 26 14.9 25 16.3 16.6

12 9.2 19 11.5 16.3 27 9.9 23.7 11.9 18.1

13 11.3 21.6 14 18.7 28 12.8 26.3 13.5 13.7

14 10 19.8 14 15.9 29 13.1 26.1 10.9 16.8

15 8.5 19.2 17.4 15.8 30 9.8 25.8 14.8 15
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or n∗ > n0. By this and (19), we have

≥ ζ {1 − (ζ + ρ)/[2(1 + ζ )]}
hen n∗ > n0.

Also by (19), we have

< (ζ + ρ)/[2(1 + ζ )]

or n∗ > n0. Hence,

− V ≥ ζ {1 − (ζ + ρ)/[2(1 + ζ )]} − (ζ + ρ)/[2(1 + ζ )]

= (ζ − ρ)/2.

f ζ > 0, we choose a ρ satisfying 0 < ρ < ζ or if ζ = 0, we choose a ρ
atisfying 0 < ρ < 2τ . Then (21) is greater than zero. Thus, the proof

s completed.

In the proof of the theorem, we require that the subgroup sample

ize is large because we need to apply the law of large number to

rove it. This theorem discusses the known covariance case. As for

he unknown covariance matrix case, from the control limits shown

n Section 4, it is likely that the result is still valid. However, it is not

asy to obtain a similar result for the unknown covariance matrix

ase because, to our best knowledge, there is no similar result as

q. (4) established for the unknown covariance case in the literature.

herefore, for the unknown covariance matrix case, the theoretical

esults are still under study. In addition, since the distribution of the

ames–Stein estimator has not been established in the literature, the

tudy for applying the result of the theorem to other charts are still on-

oing. But from the simulation results, this phenomenon also holds

or other charts. Also the result of the theorem may be related to the

etter performance of the chart because we expect that a signal occurs

arlier for a smaller control limit. That is, smaller control limits may

ead to shorter ARL1. As a result, we expect that a chart with a smaller

ontrol limit may lead to better performance under the same ARL0.

. Example

In this section, we use an example from chemical industry to il-

ustrate the applicability of the proposed charts. The data, adapted
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Fig. 1. The MC1 and JS-MC1 charts with k = 0.5 for
rom Montgomery (2009, p. 520), include 30 samples (with size 1) of

process variables (p = 4) from a chemical process, which are shown

n Table 13.

These data are used to demonstrate the performance of a princi-

al component analysis in Montgomery (2009). Treating the data in a

imilar way as Montgomery (2009), the first 20 samples are assumed

o be drawn from the in-control process and are utilized for the Phase I

arameter estimation while the last 10 samples are used for the Phase

I monitoring. As indicated in Montgomery (2009), there is a mean

ector shift beginning at sample 24 or 25. We treat the sample covari-

nce matrix of the first 20 samples as the true covariance matrix and

ake a transformation so that the resulting process variables have the

dentity covariance matrix. Then we compare the results of the con-

entional and JS-type charts using the transformed process variables.

ere the James–Stein estimator of the JS-type control chart shrinks to-

ard the zero vector. The conventional and JS-type control charts for

he 10 samples in the Phase II monitoring are presented in the figures

elow. All control charts have the ARL0 approximately equal to 200.

In Fig. 1, the MC1 chart detects an out-of-control signal at the

0th sample while the JS-MC1 chart triggers at the 8th sample. Fig. 2
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monitoring the last 10 samples in Table 13.
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Fig. 2. The MEWMA and JS-MEWMA charts with λ = 0.2 for monitoring the last 10 samples in Table 13.
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shows that the MEWMA chart detects an out-of-control signal at the

8th sample whereas the JS-MEWMA chart triggers an out-of-control

signal at the 6th sample. Here we do not present the T2 and SZ &

MZ charts and their JS-type counterparts because both the conven-

tional and JS-type charts detect an out-of-control signal at the same

sample. This example shows that the JS-MC1 and JS-MEWMA charts

can detect an out-of-control signal earlier than the corresponding

conventional charts in a practical application when a mean vector

shift occurs.

7. Conclusion

In this article, the multivariate JS-type control charts based on

the James–Stein estimator for monitoring the mean in the Phase II

study are proposed for both cases of known and unknown covariance

matrix. Simulation studies show that the JS-type control charts, as

compared with the conventional control charts, can have substantial

improvement. But when the Phase I sample size is very large, both

the sample mean and the James–Stein estimator can accurately es-

timate the true mean, the improvement of the control based on the

James–Stein estimator is not as significant as that for the small sam-

ple size case. Thus, the improvement of the JS-type chart depends on

the sample size. Since in high dimensional case, it needs relatively

more observations to obtain an accurate estimator than in the low

dimensional case, the control chart based on the James–Stein estima-

tor can be a competitive alternative when the sample size is not very

large. In addition, the improvement of the JS-type control charts also

depends on the covariance matrix of the process variables. Explor-

ing the relationship between the improvement level of the JS-type

control chart and the form of the covariance matrix is an interesting

problem. In our future work, we will explore the relationship. Finally,

the advantage of the JS-type charts over the conventional charts is

also illustrated in a real example from the chemical industry.
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