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The Gauss�Markov theorem provides a golden standard for constructing the
best linear unbiased estimation for linear models. The main purpose of this article
is to extend the Gauss�Markov theorem to include nonparametric mixed-effects
models. The extended Gauss�Markov estimation (or prediction) is shown to be equiv-
alent to a regularization method and its minimaxity is addressed. The resulting Gauss�
Markov estimation serves as an oracle to guide the exploration for effective nonlinear
estimators adaptively. Various examples are discussed. Particularly, the wavelet
nonparametric regression example and its connection with a Sobolev regularization
is presented. � 2001 Academic Press
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1. INTRODUCTION

Consider a process Y observed through the model

Y=Af +_=. (1.1)

The function of interest, f, is defined on an index set T. The index set T

can be an interval, a set of finite elements, or a set of countable elements.
The error process = is zero mean and is defined on an index set J with a
known covariance kernel R. A is a linear mapping from L2[T] to L2[J].
When A is the identity mapping, the signal f is observed directly with noise.
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Otherwise, the signal is observed indirectly through A with noise. The
underlying function f is modeled via nonparametric mixed-effects. That is,

f (t)= :
m

k=1

;k,k(t)+$Z(t), t in T, (1.2)

where ,k(t) are known functions, ;k are fixed but unknown coefficients,
Z(t) is a zero mean process with a covariance kernel E[Z(t) Z(s)]=
W(t, s) and Z(t) is independent of =. The ratio $�_ is assumed known.1

The mixed-effects models described in (1.1) and (1.2) are often used in
the analysis of longitudinal data or curve data. (See Laird and Ware, 1982;
Ramsay, 1982; Besse and Ramsay, 1986; Ramsay and Dalzell, 1991; Anderson
and Jones, 1995; among many others.) They also appear in the literature of
spline smoothing and nonparametric Bayesian regression (Kimeldorf and
Wahba, 1970 and 1971; Wahba, 1978 and 1990; and Barry, 1986). In this
article we extend the Gauss�Markov Theorem for linear mixed-effects
models to the nonparametric mixed-effects models. In contrast to using
traditional linear algebra approach, we use analysis tools involving
reproducing kernel Hilbert spaces. We find it quite natural to describe the
space of fixed effects and the space of random effects via subspaces of a
certain reproducing kernel Hilbert space (RKHS) and the penalty in the
associated regularization can also be naturally represented by a semi-norm
of the RKHS. The technical development of extended Gauss�Markov
Theorem provides a unified and illuminating perspective for constructing
linear estimators or predictors for various models. There are often param-
eters involved in the extended Gauss�Markov Theorem. When there is no
prior knowledge about these parameters, one needs to estimate them based
upon the data. Is then the extended Gauss�Markov Theorem of no practical
value? The answer is no. The extended Gauss�Markov Theorem provides
an oracle! Although it results in a linear estimator which often involves
with unknown parameters, this linear estimator can serve as a useful guidance
for exploring proper and effective nonlinear estimators. The reader is referred
to Huang and Lu (2000) for an application of the extended Gauss�Markov
Theorem to wavelet nonparametric regression.

The article is organized as follows. In Section 2, the Gauss�Markov
estimation is extended to a more general setting to include nonparametric
mixed-effects. The extended Gauss�Markov estimation is the so called best
linear unbiased prediction (BLUP) because it is linear, unbiased and it

250 HUANG AND LU

1 Knowledge of the ratio $�_ together with the identifiability condition for ; (in Section 2)
will be necessary and sufficient for the identifiability of the nonparametric mixed-effects model
discussed later. One may assume that both _ and $ are known and set $ to one without loss
of generality. But then the modeling assumption will be more restricted than only assuming
the knowledge of the ratio.



minimizes the mean square error. In Section 3, a regularization method via
functional penalized least squares (PLS) is described. The BLUP can be
obtained as a functional PLS estimator, where the minimaxity of this
regularization method is connected to that in Li (1982). There is also an
intrinsic linkage between the functional PLS regularization and the Sobolev
regularization in wavelet shrinkage presented in Section 3. The normal equa-
tions are derived in Section 4. In Section 5, a generalization to the case that
the signal f is observed through an affine mapping is investigated. Illustration
examples and discussion are given in Section 6.

2. THE EXTENDED GAUSS�MARKOV THEOREM

2.1. Preliminaries. A couple of notations and properties are introduced
below.

v Let H0 be the Hilbert space linearly spanned by [,k(t), k=1, ..., m]
and equipped with the L2[T]-norm. (The specific norm chosen here will
not affect the result of Gauss�Markov estimation nor the corresponding
regularization discussed later. It is simply a choice of convenience for
writing down normal equations in Section 4.)

v Let HW be the RKHS generated by the covariance kernel W of the
process Z(t).

v Define H1=H0�HW , which is a RKHS.

v Let HR be the RKHS generated by the error covariance kernel R.
Assume that R has a positive discrete spectrum, i.e., an eigenfunction-
eigenvalue decomposition with all (countably many) eigenvalues positive.

v Now A is a linear mapping from L2[T] to L2[J]. When dealing
with fixed effects, we confine A to be from H0 to HR and use the notation
A[H0 � HR] for the operator itself and use notation A*[HR � H0] for its
adjoint. When dealing with random effects, we confine A to be from HW

to HR and use the notation A[HW � HR] for the operator itself and use
notation A*[HR � HW] for its adjoint. The adjointness of a pair of operators
depends on the norms employed in the involved linear spaces. The reader
should be cautioned that the HR -adjointness is not equal to the L2[J]-
adjointness. For instance, one can consider the above bounded linear
mapping A[H1 � HR ] . The HR-adjoint operator, A*[HR � H1] , has the
property that for f in H1 and h in HR ,

(A*[HR � H1] h, f ) H1
=(h, Af ) HR

,
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while the L2[J]-adjoint operator, A*[L2(J) � H1 ] , means that the adjoint
operator is derived as if the linear space HR is equipped with the L2[J]-
norm. The adjoint operator A*[L 2 (J) � H1 ] has the property that for f in H1

and h in HR ,

(A*[L2(J) � H1] h, f ) H1
=(h, Af ) L 2[J] .

v Let L[H] denote an arbitrary bounded linear functional on an
arbitrary RKHS H of functions on T. The symbol L[t, H] may be also
used to denote its dependence on a particular t in T.

v Let l[t, H] denote the evaluation functional on H defined by
l[t, H](h)=h(t) for h in H.

v Let M be the reproducing kernel of a RKHS H. The notation
(L1, [H] �L2, [H]) M is used to denote the bi-linear functional

L (s)
1, [H] L (t)

2, [H]M(s, t),

where L ( } )
i, [H] means Li, [H] is applied to what follows as a function of ( } ).

The subscripts may be suppressed from various symbols to keep notation
simple when there is no ambiguity.

2.2. Extended Gauss�Markov Theorem. Adopting the conventional
terminology, the estimators of random effects are predictors and the
estimators of fixed effects are estimators. If there is no ambiguity, estimators or
predictors are used without distinction.

Definition. A predictor f� (t) is the best linear unbiased prediction
(BLUP) for f (t) if and only if

v f� (t) is linear in Y in the sense that f� (t) can be represented as
L[t, HR] Y,

v f� (t) is unbiased in the sense that, Ef� (t)=Ef (t) for all t in T, and

v f� (t) has the minimum mean square error, that is, E( f� (t)& f (t))2�
E( f� (t)& f (t))2 for all t in T, among all linear unbiased estimators f� (t).

The covariance kernel for random effects is supposed to satisfy the
conditions:

|
T

W(t, t) dt<� and |
T

|
T

W2(t, s) ds dt<�. (2.1)

If T is a finite set or a set of countable elements, the Lebesgue measure dt
should be replaced by the counting measure. The condition �T W(t, t) dt
<� ensures that the sample path of Z(t) is in L2[T] a.s. Meanwhile, the
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condition �T �T W2(t, s) ds dt<� ensures that the kernel W has an
eigenfunction-eigenvalue decomposition by the Hilbert�Schmidt theorem
(Reed and Simon, 1972; Wahba, 1990). Thus, there exists a complete
orthonormal basis of L2[T], [�1(t), �2(t), ...], and eigenvalues *1�*2

� } } } �0 such that W has the decomposition

W(s, t)=:
&

*&�&(s) �&(t).

Thus, the process Z(t) has a representation, the so called Karhunen�Loe� ve
representation,

Z(t)t:
&

#&�&(t), (2.2)

where ``t'' means ``equal in distribution'', #&=�T Z(t) �&(t) dt, &=1, 2, ...
are a sequence of uncorrelated random variables with zero means and
variances *1 , *2 , ... .

When there are only finitely many non-zero eigenvalues, the prior model
(1.2) reduces to a linear parametric mixed-effects model:

f (t)= :
m

k=1

;k,k(t)+ :
J

&=1

$#&�&(t), t in T. (2.3)

The Gauss�Markov Theorem for parametric models (i.e., the BLUE for
fixed-effects models or the BLUP for mixed- or random-effects models) has
been discussed, for instance, in Harville (1976) and Robinson (1991). As
for the nonparametric model, there are discussions in the literature of
spline smoothing (Kimeldorf and Wahba, 1971; Wahba, 1978; Wang,
1998). This article complements as well as generalizes the Gauss�Markov
estimation in Kimeldorf and Wahba (1971, Section 7), Wahba (1978) and
Harville (1976). It also aims to provide an interesting link to the work by
Li (1982). Following is a key lemma for establishing the Gauss�Markov
Theorem later.

Lemma 2.1. Let HM be a RKHS of functions defined on index set J

with kernel M. Assume the kernel M has a positive discrete spectrum:
M(`, `$)=� j * (M)

j hj (`) h j (`$), where * (M)
1 �* (M)

2 � } } } >0 and [h j : j�0]
forms a complete orthonormal basis for L2[J]. Let H be a RKHS of func-
tions defined on index set T and A[H � HM ] be a one-to-one linear mapping
from H to HM . Then the unique solution to the following minimization
problem

min
L [HM ]

(L[HM] �L[HM ]) M, subject to L[HM] A[H � HM]=l[t, H] (2.4)
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is given by

Lopt
[HM ]=l[t, H](A*[HM � H] A[H � HM])&1 A*[HM � H] .

Proof. Let L[HM] be an arbitrary bounded linear functional on HM satisfy-
ing the constraint L[HM] A[H � HM]=l[t, H] and put 2[HM]=L[HM]&
Lopt

[HM ] . Then 2[HM] A[H � HM]=0, a zero linear functional on H. It is true
that

(L[HM] �L[HM]) M=(Lopt
[HM] �Lopt

[HM]) M+(2[HM ] �2[HM]) M

+2(Lopt
[HM] �2[HM ]) M

=(Lopt
[HM ] �Lopt

[HM] ) M+(2[HM] �2[HM ]) M,

if one can show that (Lopt
[HM]�2[HM]) M=0. Then the minimum is achieved

by taking 2[HM]=0. Therefore, it is left to show that (Lopt
[HM]�2[HM]) M=0.

Let dj=2[HM] hj . Then

(Lopt
[HM] �2[HM]) M=(l[t, H](A*A)&1 A*�2[HM]) M

=l[t, H](A*A)&1 \: dj * (M)
j A*hj+ .

The term � dj * (M)
j A*[HM � H] hj is an element in H with the following

property. For every , # H,

�: dj* (M)
j A*hj , ,�H

=�: dj* (M)
j h j , A,�HM

=�: djhj , A,�L 2 [J]

=2[HM] A[H � HM] ,=0.

Thus, � dj* (M)
j A*[HM � H] hj=0 and then (Lopt

[HM ] �2[HM])M=0. Q.E.D.

Based on the eigenfunction-eigenvalue decomposition of M, one can
define M to be the bounded linear operator on HM by Mhj=* (M)

j h j . That
is, M is induced by the kernel M. Since that A*[HM � H]=A*[L 2(J) � H] M&1,
Lemma 2.1 can also be expressed as below.

Lemma 2.1*. The solution for the minimization problem (2.4) can also be
represented as

Lopt
[HM ]=l[t, H](A*[L 2(J) � H] M&1A[H � HM])&1 A*[L 2(J) � H] M &1.
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A special case of Lemma 2.1 (or Lemma 2.1*), which appears constantly
in linear regression problems, is given below. It can be viewed as a matrix
analogue of Lemma 2.1 (or Lemma 2.1*). Let L be an n-vector, x be an
m-vector, X be an n_m full rank matrix with m<n and M be an n_n
positive definite matrix. The unique solution to the following minimization
problem

min
L # R n

LTML subject to LTX=xT

is given by

LT
opt=xT (XTM&1X)&1 XTM &1.

From the above key lemma, the main theorem on Gauss�Markov estimation
can be proved as shown below. First, there are identifiability and boundedness
(continuity) conditions needed.

Identifiability condition. A,k , k=1, ..., m, are linearly independent.
(This condition ensures that ;k are identifiable.)

Boundedness (continuity) condition I. The linear mapping A is bounded
on H1 .

Theorem 2.2 (Extended Gauss�Markov Theorem). The observation
data come from the model of (1.1) and (1.2) with R having a positive discrete
spectrum and W satisfying (2.1). Assume that the identifiability condition
and the boundedness condition I are met. Then the BLUP for f is given by
f� BLUP= f� FE+ f� RE with

f� FE=(A0*M&1A0)&1 A0*M&1Y,

f� RE =:&1WA*WM &1(Y&A0 f� FE),

where

A0=A[H0 � L2(J)] ,

A0*=A*[L 2(J) � H0] ,

AW=A[HW � L 2(J)] ,

A*W=A*[L 2(J ) � HW] ,

:&1=$2�_2, M is the linear operator induced by the kernel M=R+:&1WA

with WA=A(s)A(t)W(s, t), and W is the linear operator induced by the kernel W.
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Proof. Let L[t, HR] Y be an unbiased linear estimator for f (t) with
L[t, HR] satisfying L[t, HR] A[H0 � HR]=l[t, H0] . There are two possible cases.

Case I. AW is one to one and onto. Then the mean square error of
L[t, HR] Y becomes

E(L[t, HR] Y& f (t))2=E(L(Af +_=)& f (t))2

=E(L($AW Z+_=)&$Z(t))2

=E(L($AW Z+_=)&$l[t, H1](A*WAW)&1 A*WAWZ)2

=_2(L�L)M&2$2(L�l[t, H1](A*WAW)&1 A*W) WA

+$2W(t, t),

where WA is the covariance kernel of AZ. Since that R has a positive
discrete spectrum and WA has a non-negative discrete spectrum, M has a
positive discrete spectrum. Hence, it is straightforward to see that

WA(`, `$)=W (`$)
A M &1(`$)M(`, `$),

where WA is the linear operator induced by the kernel WA . One then has

(L�L) M&2:&1(L�l[t, H1 ](A*WAW)&1 A*W) WA

=(L�L) M&2:&1(L�l[t, H1](A*WAW)&1 A*WWAM&1) M

=(L
*

�L
*

) M&:&2((l[t, H1](A*WAW)&1 A*WWAM&1)

� (l[t, H1](A*WAW)&1 A*W WAM&1)) M,

where

L
*

=L&:&1l[t, H1](A*WAW)&1 A*WWAM &1

=L&:&1l[t, H1] WA*WM&1.

It is noted that L
*

A0 , as a linear functional on H0 , satisfies the constraint

L
*

A0,=(l[t, H0]&:&1l[t, H1 ]WA*WM&1A0) ,

for , # H0 . By Lemma 2.1*, the mean square error E(L[t, HR] Y& f (t))2 is
minimized by taking

L
*

=(l[t, H0]&:&1l[t, H1] WA*W M&1A0)(A0*M&1A0)&1 A0*M&1.
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Then, the optimal L is given by

L[t, HR ]=l[t, H0](A0*M&1A0)&1 A0*M&1

+:&1l[t, H1] WA*WM&1(I&A0(A0*M&1A0)&1 A0*M &1),

where I is the identity mapping on HR . Therefore,

L[t, HR] Y= f� FE (t)+ f� RE (t).

Case II. AW is not one to one and onto. Let Hnull
W be the null space

of AW and let (Hnull
W )= be its orthogonal complement. Then Z has a

unique decomposition Z=Z1+Z2 with Z1 in the null space and Z2 in the
complement. Now AW is one to one and onto in (Hnull

W )=. The best linear
unbiased prediction of Z2 proceeds as Case I above. Meanwhile, it is not
hard to see that the BLUP of Z1 is simply zero. Therefore, Theorem 2.2
also holds for Case II. Q.E.D.

The extension of Gauss�Markov type estimation to include nonparametric
models can be traced back to the work of Kimeldorf and Wahba (1971). They
considered a special model of (1.1) and (1.2) with random errors =tN(0, R),
random coefficients ;tN(0, I ), and a random component Z(t) which is a
zero mean Gaussian process with a known covariance kernel, where Z(t),
= and ; are stochastically independent. There is a subtle difference between
their approach and ours in dealing with the parameters ;. In Kimeldorf
and Wahba (1971), the definition of unbiased estimation for nonparametric
models is the same as ours, i.e., it is conditioned on a fixed but arbitrary
;. In addition to the unbiasedness, the criterion for Gauss�Markov type
estimation is to minimize the mean square error for estimation of f. In their
work, the parameters ; are assigned a standard normal distribution and
the MSE is averaged over the distribution of ;. The Gauss�Markov type
estimation so derived is guaranteed to be unbiased for every fixed ;.
However, the minimum MSE is not guaranteed for every fixed ;, but only
guaranteed for averaging over ; according to its distribution. Our approach
guarantees the unbiasedness and minimum MSE for every fixed but
otherwise arbitrary ;.

In Wahba (1978), ;tN(0, !I ) and ! is let to approach infinity. For fixed
_2, $2, and !, let E!( f (t) | Y ) denote the posterior mean of f (t) given Y.
Under normality assumptions, the posterior mean E!( f (t)|Y) is the BLUP
in the sense that both the unbiasedness and the mean square error are
averaged over the distribution of ; instead of conditioning on a fixed value
of ;. By letting ! � �, the resulting estimate lim! � � E!( f (t) | Y) is BLUP
at design points (Speed 1991). This ``BLUP at design points'' phenomenon
is re-illustrated in Wang (1998). Theorem 2.2 fills in the blanks for non-
design points. Furthermore, the BLUP for the bounded linear functional of
f can be derived similarly as in the next corollary.
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Corollary 2.3. Assume the conditions of Theorem 2.2. Let L[H1] be a
bounded linear functional on H1 . Then the BLUP for L[H1 ] f is L[H1]( f� BLUP).

3. THE BLUP AND THE REGULARIZATION

The following regularization method is investigated,

min
f # H1

&2 (Y, Af ) HR
+(Af, Af ) HR

+: &P[H1 � HW] f &2
HW

, (3.1)

where P[H1 � HW] f is the projection of f in H1 onto HW . Although often
that the sample path of Y does not belong to HR , (Y, h) HR

is a well-
defined random variable for every h in HR because the error process = with
covariance kernel R has the Karhunen�Loe� ve representation. Conventionally,
the above method in (3.1) can be regarded as a functional penalized least
square (PLS) method:

min
f # H1

&Y&Af &2
HR

+: &Pf &2
HW

. (3.2)

The above regularization can be connected with that discussed in Li
(1982). Let A2, [H1 � H2] be a bounded linear mapping from H1 onto H2 , a
RKHS, with the null space H0 . Our regularization method (3.1) or (3.2)
penalizes directly on the HW-norm of f, while Li's penalizes on the H2 -norm
of the transformed f by A2 :

min
f # H1

&2 (Y, Af )HR
+(Af, Af ) HR

+: &A2 f &2
H2

. (3.3)

It is noted that the two spaces, HW and H2 , are topologically isomorphic
via A2 . Similar to Li (1982), the following boundedness condition is also
necessary.

Boundedness Condition II. Let LA, Y be a linear functional on H1 defined
by LA, Y (g)=(Y, Ag) HR

. Assume that LA, Y is bounded for the realization
of Y.

Theorem 3.1. It is assumed that the identifiability condition as well as
the two boundedness conditions I and II hold. Then the unique solution to
problem (3.1) is the BLUP, f� BLUP , in Theorem 2.2 with :=_2�$2.

Proof. Let the minimizer of (3.1) be of the form

f:= f0+WA*WM&1h+\,
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where f0 is in H0 , h is in HR and \ is an element in HW which is ortho-
gonal to WA*WM&1(HR). Any element in H1 has such a representation. It
is true that

\ = WA*WM&1(HR) if and only if \ = A*W M&1(HR).

Then for every h in HR one has

(A\, M&1h) HR
=(\, A*WM &1h) HW

=0.

Thus A\=0 and (3.2) becomes

&Y&Af &2
HR

+: &Pf &2
HW

=&Y&A( f0+WA*WM&1h)&2
HR

+: &WA*WM &1h+\&2
HW

.

It is aimed to find f0 , h and \ to minimize the above expression. It is evident
that \ must be zero. For an arbitrary fixed f0 in H0 , let Y� =Y&Af0 . The
minimization problem now becomes

min
h # HR

&Y� &AWA*WM&1h&2
HR

+: &WA*WM&1h&2
HW

. (3.4)

To solve the minimization problem (3.4), one considers h=:&1(Y� +h2),
where h2 is an arbitrary element in HR . Then

&Y� &AWA*WM&1h&2
HR

+: &WA*W M&1h&2
HW

=&(I&:&1AWA*WM&1) Y� &:&1AWA*W M &1h2&2
HR

+:&1 &WA*WM&1Y� +WA*WM&1h2&2
HW

.

After expanding the squared norms & }&2
HR

and & }&2
HW

, the sum of cross
terms in the above expression is zero since

&2 ( (I&:&1AWA*WM&1) Y� , :&1AWA*WM &1h2) HR

+2:&1 (WA*WM&1Y� , WA*WM &1h2) HW

=&2 (M&1Y� , :&1AWA*WM&1h2) L2 [J]

+2:&1 (A*WM &1Y� , WA*WM&1h2) L 2[J]=0.

Thus the minimum for (3.4) is achieved by taking h2=0. That is, the
solution for (3.4) is h� =:&1Y� .
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The estimate h� =:&1Y� is plugged into (3.4). Then one opts for f0 that
minimizes

&(I&:&1AWA*WM &1)(Y&Af0)&2
HR

+:&1 &WA*WM &1(Y&Af0)&2
HW

.

(3.5)

To solve the minimization problem (3.5), one considers f0=�m
k=1 ;k ,k .

The derivatives of (3.5) are taken with respect to ;k and set to be zero.
Then the optimal solutions for ;k are obtained by solving the resulting
equations. The calculations are straightforward and the details are omitted.
We will only state the result. The solution for the minimization problem
(3.5) is given by f0= f� FE . The estimate f0= f� FE is then plugged into the
optimal solution h� . The solution to the minimization problem (3.2) turns
out to be

f:= f� FE+:&1WA*WM&1(Y&Af� FE),

which is exactly the BLUP in Theorem 2.2. Q.E.D.

Remark 1 (Minimaxity). By Theorem 2.2 of Li (1982), L[H1]( f� BLUP) is
the minimax linear estimator of L[H1] f for f in the class:

[ f : f # H1 and &Pf &HW
�$].

The interesting connection lies between the ratio _�$ in the model, the
tuning parameter : in the regularization method, and the upper bound $
in restraining functional norm &Pf &HW

for linear minimaxity.

Remark 2 (Sobolev regularization for wavelet shrinkage). Consider the
nonparametric regression problem, i.e., A is the identity mapping in (1.1).
For every function f in L2[0, 1], it can be represented by wavelet series.
We treat the scaling coefficients as fixed effects and wavelet coefficients
as random effects. Adopt the usual notations for scaling functions and
wavelets. Let ,(t) be a scaling function and �(x) be the associated wavelet
function. The dilations and shifts of , and � are given by ,j, k(x)=
- 2 j ,(2 jx&k) and �j, k(x)=- 2 j �(2 jx&k) respectively. For a fixed
resolution level j, f has the wavelet expansion as

f (t)= fFE (t)+ fRE (t)=:
k

;k ,j, k(t)+$ :
l� j

:
k

#l, k�l, k(t),

where ;k=( f, ,j, k) and $#l, k=( f, �l, k). For scaling functions and
wavelets on the interval, both �k above are finite sums with the number of
elements depending on the resolution levels. The scaling coefficients ;k are
fixed effects and the wavelet coefficients #l, k are random effects with zero
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mean and variance *l #E#2
l, k for each resolution level l. Then f (t) meets

the prior model (1.2) with

W(s, t)= :
l� j

:
k

*l �l, k(t) �l, k(s).

The corresponding regularization method in (3.1) or (3.2) has the following
penalty

: &Pf &2
HW

#: :
l� j

:
k

|( f, �l, k) |2�*l , (3.6)

where : is the same as previously defined. With these particular choices of
,, �, penalty in (3.6) and *l=O(2&2ls), the procedure by (3.1) is a Sobolev
regularization (Huang and Lu, 2000).

4. THE NORMAL EQUATIONS

In this section, normal equations are derived from the regularization
(3.1). The model (1.1), the identifiability condition and both boundedness
conditions are assumed. The ,ks are also assumed to be orthonormal
because one can always orthonormalize them if they are not the case. The
solution for (3.1) is of the form

f:(t)= :
m

k=1

;k,k(t)+:
&

#&�&(t).

It is clear that

&2 (Y, Af ) HR
+(Af, Af ) HR

+: &Pf &2
HW

=&2 (Y, Af )HR
+(A*Af, f ) H1

+: (P*Pf, f ) H1
,

where A*=A*[HR � H1] and P*=P*[HW � H1] . By the boundedness assump-
tion on LA, Y and the Riesz representation, there exists a unique h� Y in H1

such that

LA, Y (g)=(Y, Ag) HR
=(h� Y , g) H1

for all g in H1 . Since h� Y can be written as h� Y=�m
k=1 ak,k+�& b&�& , the

coefficients ak and b& can be calculated via

ak=(h� Y , ,k) H1
=(Y, A,k) HR

, k=1, ..., m

and

b&=*& (h� Y , �&) H1
=*& (Y, A�&) HR

, &=1, 2, ... .
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By the arguments of Theorem 2.1 in Li (1982), f:(t)=(:P*P+A*A)&1 h� Y .
Then

f:(t)=(:P*P+A*A)&1

\ :
m

k=1

(A,k , Y) HR
,k(t)+:

&

(A�& , Y) HR
*& �&(t)+ .

Therefore, we have the following normal equations.

Theorem 4.1. Assume that ,ks are orthonormal. The normal equations
are given by

(,k , (A*A+:&1P*P) f )H1
=(Y, A,k) HR

, k=1, ..., m, (4.1)

(�& , (A*A+:&1P*P) f )H1
=(Y, A�&) HR

, &=1, 2, ... . (4.2)

5. GENERALIZATION TO AFFINE MAPPINGS

In this section, it is assumed that the signal f is observed through an
affine mapping A� with random noise:

Y=A� f+_=, (5.1)

A� f=;0h0+Af, (5.2)

where A is a linear mapping, h0 is a known function in HR which is
orthogonal to A(H0), and ;0 is a fixed but unknown parameter. The above
orthogonality requirement for h0 to A(H0) can be relaxed to a condition
that h0 is linearly independent of the space A(H0). The parallel results of
Theorems 2.2 and 3.1 are given in Theorems 5.1 and 5.2 respectively. The
proofs are similar and omitted.

Theorem 5.1 (Gauss�Markov). Suppose that the model (1.1) in Theorem
2.2 is replaced by (5.1) and (5.2). Under the same conditions in Theorem 2.2,
the BLUP for f in (5.1) is given by f� BLUP= f� FE+ f� RE with

f� FE =(A0*M&1A0)&1 A0*M &1(Y&;� 0h0)

f� RE =:&1WA*WM&1(Y&;� 0h&A0 f� FE),

where

;� 0=(h0 , M&1Y) L2 (J) �(h0 , M&1h0) L 2(J)

and all other notations are defined as in Theorem 2.2.
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Notice that, if h0 is only independent of A(H0) instead of orthogonal to
A(H0), the above estimate of ;� 0 should be modified accordingly.

Theorem 5.2. Assume the identifiability condition as well as the two
boundedness conditions I and II hold. Then the unique solution to problem

min
f # H1

&2 (Y, A� f ) HR
+(A� f, A� f ) HR

+: &P[H1 � HW] f &2
HW

(5.3)

is the BLUP, f� BLUP , in Theorem 5.1 with :=_2�$2.

6. EXAMPLES AND DISCUSSION

A few selected examples are briefly discussed below.

Example 1 (Linear mixed-effects regression models). These are special
cases for the problem considered in this article. Consider the linear mixed-
effect model Y=X;+Z#+_=, where Var(=)=R and Var(#)=$2W. Then
T=[1, 2, ..., m+r], J=[1, 2, ..., n], A=(X, Z), A*=(X, Z)T R&1, P=
diag(0m_m , Ir_r), P*=diag(0m_m , W&1) and f =(;T, #T)T. Plugging into
Theorem 4.1, one can easily get the normal equations

\X TR&1X
ZTR&1X

X TR&1Z
ZTR&1Z+:&1W&1+\;

#+=\XTR&1Y
ZTR&1Y+ ,

where :=_2�$2. The resulting estimates for ; and # are BLUP.

Example 2 (Nonparametric regression, continued from Remark 2).

Yi= f (ti)+_=i , i=1, ..., n.

Suppose that we have iid observations Yi at uniform design points. Write
f in terms of the wavelet expansion

f (t)=:
k

;k,j, k(t)+$ :
l� j

:
k

#l, k�l, k(t).

The reader is referred to Huang and Lu (2000) for the BLUP, the associated
Sobolev regularization and an asymptotic equivalence of the BLUP. The
asymptotic equivalence of the BLUP can be shown to be

f� BLUP(t)&:
k

;� k,j, k(t)+ :
l� j

:
k \1&

_2�n
$2*l+_2�n+ #̂l, k�l, k(t),
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where ;� k and #̂l, k are empirical wavelet coefficients. The quantity $2*l+_2�n
can be estimated by #̂2

l, k . Thus the BLUP practically provides a useful
guidance for the nonlinear estimator proposed below,

f� GCV
BLUPWAVE(t)=:

k

;� k,j, k(t)+ :
l� j

:
k \1&

c
#̂2

l, k++

#̂l, k �l, k(t),

where c is chosen by the generalized cross validation.

Example 3 (Deconvolution).

Yi=|
1

0
K(ti&t) f (t) dt+_= i , i=1, ..., n.

Suppose that we have iid observations Yi at uniform design points and that
the convolution kernel K is known. Write f in terms of the wavelet expan-
sion

f = :
k # Z

;k ,j, k+ :
l� j

:
k # Z

#l, k�l, k for a fixed j,

where ;k=( f, , j, k) and #l, k=( f, �l, k) . Assume that the convolution
kernel K satisfies the condition:

K V u=0 if and only if u is a zero function.

Let

K*(|)=| K(x) e&i|x dx,

,*j, k(|)=| ,j, k(x) e&i|x dx,

�*l, k(|)=| �l, k(x) e&i|x dx,

,� j, k(x)=
1

2? | ,*j, k(|)(K*)&1 (|) ei|x d|,

�� l, k(x)=
1

2? | �*l, k(|)(K*)&1 (|) ei|x d|.
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Then the two sets, [K V ,j, k , K V �l, k , l� j, k # Z] and [,� j, k , �� l, k , l� j,
k # Z], are both a complete basis for L2(I ). Moreover, they are bi-ortho-
gonal dual bases. Then the empirical coefficients are given by

;� e
k=

1
n

:
n

i=1

,� j, k(t i ) Yi ,

#̂e
l, k=

1
n

:
n

i=1

�� l, k(ti) Yi .

The BLUP can be derived as

\;�
#̂+BLUP

={I&*(XTX )&1 \0
0

0
4&1+=\;� e

#̂e+ , (6.1)

where X is the design matrix (including fixed and mixed effects) based on
[K V ,j, k(ti), K V �l, k(ti) : k # Z, l� j, i=1, ..., n] and 4 is a diagonal
matrix given by 4=diag(*j , *j+1 , ...)T. Parameter selections for * and *l

are important. Again, (6.1) serves as a guidance of possible nonlinear
estimators for f with plug-in parameter estimates. However, it is not the
main interest of this article and we will omit further discussion.

The extended Gauss�Markov theorem for nonparametric mixed-effects
models provides theoretical enlightenments for a large spectrum of prob-
lems. The perspectives of BLUP, PLS, regularization, and minimaxity
have interesting connections as demonstrated in this article. These results
combining with the approximation tools, like splines or wavelets, can shed
light on the reconstruction of signals from noisy data. In particular, the
connection between the estimated coefficients and unknown parameters can
be used to explore effective nonlinear estimators (or predictors) adaptively
with the oracle provided by the extended Gauss�Markov theorem.
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